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Abstract 

 Electrons in strong magnetic fields are confined to one dimension and 
can have properties not found in three dimensional electron systems. This 
dissertation will describe theoretical investigations into the mechanisms of 
phonon emission by electrons confined to one dimension. It will then review 
previous work on the role of phonon emission in GaAs/AlxGa1–xAs 
heterojunction tunneling experiments which have indicated that the transport 
of energetic electrons in very lightly doped GaAs has an unusual behavior 
when strong magnetic fields are applied parallel to the direction of current 
flow. It will also report on experimental measurements of the high electric 
field resistivity of  bulk GaAs parallel to strong magnetic fields. For these 
experiments, very lightly silicon doped GaAs  was grown on semi-insulating 
substrates by molecular beam epitaxy in a chamber demonstrated to produce 
very high purity material. The current-voltage curves of small resistors made 
from this material reveal a variety of phenomena, including carrier heating, 
donor freeze-out, magnetic freeze-out, and impact ionization. At liquid 
helium temperature, the magnetic field sweeps reveal resonant ionization 
phenomena. At liquid nitrogen temperatures, the magnetic fields appear to 
enhance the electron cooling and suppress phenomena related to valley 
transfer of electrons. These bulk measurements, together with data from 
heterostructure tunneling experiments, provide new understanding of the 
interactions between electrons, phonons and impurities in GaAs at low 
temperatures. 

Other Work 
A large part of my time at Stanford has been spent working on topics 

which are only related peripherally to the study of electron magneto-
transport in GaAs. This work is summarized in Appendix 3. 
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1. Introduction 

Modern technology has made possible the study of very small devices 
and artificially structured materials. In these systems, physical phenomena 
can have quantum coherence lengths comparable to the size of the 
structures, even at room temperature. For example, using molecular beam 
epitaxy (MBE) or metallorganic chemical vapor deposition (MOCVD), high 
purity layered crystalline semiconductors can be grown with atomic layer by 
atomic layer control. These layered structures retain perfect translational 
symmetry in two of three spatial dimensions, and carriers can be confined by 
crystal potentials in the third dimension. The combination of the small 
length scale of the layering and small scattering by imperfections results in 
large quantum effects. In recent years, investigations into the physics of 
electrons in these two dimensional semiconductor structures have uncovered 
a wealth of new phenomena, in large part due to the availability of “clean” 
systems. The combination of atomically smooth surfaces and confinement of 
electrons to two dimensions has allowed the discovery of the quantum Hall 
effect1 and the fractional quantum Hall effect.2 Already, the high mobility 
made possible by modulation doped heterostructures,3 in which the donor 
atoms are physically separated from the carriers they donate, is being 
applied to high density electronic circuits.4  

Electrons confined to one dimension have so far been much more 
difficult to realize experimentally, due to the extreme difficulty of 
fabricating lateral structures on an atomic scale. Nonetheless, progress in 
this area has been extremely rapid. Initial experiments on one dimensional 
electron systems concentrated on very narrow metal wires formed by 
shadow evaporation, and on organic chain polymers whose structures are 
intrinsically one dimensional. More recently, high resolution electron beam 
lithography has been used to carve narrow lines from silicon MOSFET's.5,6 
New phenomena observed in these semiconductor structures include 
“telegraph” (discrete level switching) signals from single electron traps7 and 
the so-called “universal conductance fluctuations”.8 These wires are “dirty” 
systems. The phenomena observed in the very narrow MOSFET's are due to 
strong scattering of the electron waves, in contrast to the quantum Hall 
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effect in the 2-dimensional modulation-doped structures, which is destroyed 
by strong scattering and is only seen in “clean” systems. Exotic methods for 
making “clean” one- (and zero-) dimensional semiconductor “wires” (and 
“dots”) have been proposed by several workers.9  However, the most 
successful attempts at fabrication have so far  involved simple etching of 
tiny patterns into layered crystals, or using ion-implantation to isolate very 
small areas. Reed10, Petroff11 and Kash12 have observed photo-
luminescence in such quantum dots and wires of GaAs showing lateral size-
effect energy shifts. They also observe luminescence efficiency significantly 
higher than observed for bulk material, which is surprising because of the 
close proximity of un-passivated surfaces to the carriers in these structures. 
It is unclear whether this is a strictly dimensional effect or related to defects, 
but the promise of new and interesting results is clear. 

Another way to study electrons confined to one dimension is to study 
electrons in strong magnetic fields. Classical electrons follow orbits which 
spiral around the magnetic field lines. When the radius of the spiral is 
comparable to the wavelength of the electron, the electron's motion 
perpendicular to the field is quantized, and it becomes effectively one 
dimensional.a   The wavefunctions for free electrons in a magnetic field  
H=H ẑ , using the Landau gauge for the vector potential are:13  

 

|kx,kz,m〉  = 
1

Ω1/3Cm
  eikxx+ikzz e–Y2/2 Hm(Y)  (1)  

 
where Ω is the system volume, the Hm(x) are the Hermite polynomials, the 
normalization factors are Cm=(2mm! πL)–1/2, the center of the 
wavefunction in the ŷ direction is at  

 

Y = 
y–kxL2

L      (2)  

 
and the magnetic confinement length is  
                                         
a Although the electrons in a magnetic field have two momentum eigenvalues, the 
kinetic energy depends only on the momentum parallel to the magnetic field. The 
energy density of states is thus one-dimensional. 
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L  =  
➹ c
eH   . (3)  

 
 These are energy eigenstates of the electron Hamiltonian with eigenvalues   

 

Ekx,kz,m  =   
➹2k

2
z

2   +  (m+1/2)�ωc  (4)  

 
where   

 

�ωc  =  
eH

m*c  (5)  

 
is the cyclotron energy. Since the states are degenerate with respect to kx the 
electrons are effectively one dimensional when �ωc is large. They are not 
truly one-dimensional, because electric fields perpendicular to the magnetic 
field introduce Lorentz forces which push the electrons perpendicular to 
both the electric and magnetic fields and break the kx degeneracy. However, 
electric fields parallel to the magnetic field do not change the one 
dimensional character of the confined electrons. Thus, strong magnetic fields 
offer a unique (and inexpensive) way to study the behavior of one 
dimensional electrons without the strong scattering present in the real 
heterostructures of today.  

In this dissertation, I will report on theoretical and experimental studies 
into the physics of electrons confined by strong magnetic fields. I will 
concentrate on the transport of such electrons when they are accelerated by 
electric fields parallel to the confining magnetic fields. These electrons 
become considerably more energetic than thermally excited electrons and 
are thus considered to be “hot” (or maybe “warm”, as will be discussed in 
Section 4.5). In polar semiconductors such as GaAs, these hot electrons 
exchange energy with the crystal lattice primarily by emitting longitudinal 
optical phonons. These phonons interact strongly with the electrons because 
the adjacent atoms vibrate out of phase with each other. In polar materials, 
the adjacent atoms are oppositely charged, and the atomic dipoles caused by 
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the lattice vibrations build up electric fields which are felt directly by the 
electrons. 

Phonons are virtually unaffected by the magnetic fields which confine 
electrons. (Although confined phonon modes can exist in compositional 
heterostructures, I will not consider these effects at all. Phonons are 
generally not confined in the very common x=0.3 AlxGa1–xAs/GaAs hetero-
structures.) The effect of confinement on the interactions of electrons and 
phonons comes primarily through changes in the density of electron states. 
Figure 1 shows the electron energy dependence of the density per unit 
energy of electron states, with the dimension as a parameter. In three 
dimensions, the density of states is proportional to the square root of the 
electron energy.  The surface area of constant energy spheres increases as 
the square of the radius in three dimensions; the increasing density of states 
follows. In one dimension, the surface “area” of a “sphere” is independent of 
“radius”.(A line has two ends independent of its length.) The density of 
states then works out to be proportional to the inverse square root of the 
energy. This means that there is a divergence at zero energy. Scattering rates 
are generally proportional to the density of available final states. For elastic 
scattering, in which the electrons do not change energy, the density of final 
states may be much smaller in one dimension compared to three. For this 
reason, Sakaki14 has argued that the mobility of electrons confined to one 
dimension would be strongly enhanced. For scattering by optical phonons, 
however, the situation may be quite different. Since optical phonon emission 
or absorption is an inelastic process, electrons of the right energy can scatter 
to zero energy states, where the number of available final states is very large 
in one dimension. This is depicted in figure 2. An electron with exactly the 
energy of a phonon is scattered to the bottom of the parabolic band, where 
the energy density of states actually diverges for ideal one dimensional 
electrons. The result of this divergence is that electrons of the appropriate 
energy interact very strongly with phonons.  

What happens when an electron has exactly the right energy to emit a 
phonon? Can the effects of the divergence of the electron density of states be 
seen in transport measurements? These are the questions that led to the work 
described in this thesis. In Chapter 2, I will present a theoretical treatment of 
phonon emission and the electron phonon interaction in one dimensional 
systems. In Chapter 3, I will review recent experimental work on the 



 
5
 

appearance of phonon structure in the current-voltage characteristics of  
semiconductor tunnel barriers when quantizing magnetic fields are applied, 
and I will examine the possibility that the one-dimensional effects predicted 
in Chapter 2 play a role in these experiments. In Chapter 4, I will present the 
results of a set of experiments designed to look for the effects of Chapter 2 
in bulk transport measurements. Finally, I will discuss the interrelations of 
the experiments of Chapters 3 and 4, and will suggest further ways to look 
for the one-dimensional effects of Chapter 2. 

  

Figure 1. Dependence of the energy density of states on electron energy, for one, two and 
three dimensional electrons in parabolic bands. 
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Figure 2. Elastic and inelastic scattering processes differ in one dimension because 
inelastic scattering can take have an infinite density of final states.
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Figure 3. Dependence of emission rate of longitudinal optical phonons by electrons in 
GaAs on electron energy and magnetic field. Emission rate is calculated using 
Fermis Golden Rule. Each of the gray curves, which give the emission rate in a 
magnetic field of 10T, go to infinity for energies such that the final energy lies at 
the bottom of a magnetic sub-band. The electrons are assumed to be initially in 
the lowest Landau level. 
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2. Phonon Emission and Polarons in One Dimension  

The interaction of electrons with polar optical phonons is of interest for 
both practical and fundamental reasons. The range of materials in which the 
polar electron-phonon interaction dominates electron transport extends from 
the semiconducting III-V compounds to the insulating alkali-halides, and 
even includes glasses such as SiO2 and surfaces of liquid helium. On the 
other hand, polarons, which are the quasiparticles associated with the 
interacting electron-phonon system, were the result of the first application of 
quantum field theoretical methods to condensed matter physics.15 Recent 
work on the electron-phonon interaction has emphasized the effects of 
reduced dimensionality on polarons and electron-phonon scattering.16  

The standard treatment of electron-phonon scattering processes such as 
phonon emission involves the use of perturbation theory. Longitudinal 
optical (LO) phonons, which have energy �ωLO, can be emitted by electrons 
with energy greater than �ωLO. To calculate the rate of phonon emission, 
Fermi's golden rule is used. Fermi's golden rule is derived by treating the 
interaction of electrons and phonons as a small perturbation to the non-
interacting electron and phonon Hamiltonian, and discarding terms higher 
than first order in the small perturbation to get: 

 
rate  =  (2π/�✉ ∑

f

  |•i|He-ϕ| f®|2  . (6) 

 
 The sum over final states implies that for a given initial energy E, the 

phonon emission rate is proportional to the density of free electron states at 
energy E–�ωLO. Using Fermi's golden rule, it is straightforward to calculate 
the phonon emission rate for an electron of energy E. The electron-phonon 
interaction is usually described by the Hamiltonian given by Fröhlich15: 

 
He-ϕ=∑

q
 Vq e –iq·r (a†q+ a–q)  (7)   

 
where  



 
9
 

 

Vq =�ωLO
4πα 
Ω kLO

  
1
q  (8) 

 
and α is the dimensionless coupling constant:  

 

α = 
m*e2

 ➹2kLO(ε∞–1– ε0–1)–1  (9)  

 
and kLO= 2m*ωLO/➹ is the wave vector of an electron with energy �ωLO. 
In this expression, the electron is treated using the notation of first 
quantization, while the phonons are in second quantization. In other words, 
the electrons, with wave vectors r, have the familiar plane wave wave-
functions, while the phonons, with wave vectors q, have the creation and 
destruction operators  a†q and aq, which represent the creation and 
destruction of phonons. These operators satisfy the commutation relations 
[a†q,aq']=δq,q', which automatically give the Bose statistics to the phonons. 
The matrix element Vq contains the strength of the interaction, and its 
dependence on the phonon wave vectorb   . The coupling constant α depends 
on the material. In GaAs, α ≈ .0717  which indicates that the perturbation is 
indeed weak and can be treated using perturbation theory. In very polar 
materials (e.g. rock salt) α ≥1 and the usual perturbative calculation 
techniques cannot be used.  

The result of a calculation of the phonon emission rate for three 
dimensional electrons in GaAs using Fermi's golden rule is shown as the 
solid curve in figure 3. Below �ωLO no phonons can be emitted. Above �ωLO  
the emission rate increases with energy, roughly proportional to the square 
root of E–�ωLO, due to the increasing number of available final states. At 
energies well above �ωLO the emission rate begins to drop due to the 1/q 
dependence of Vq. For electrons confined to two dimensions, a similar 
calculation leads to a steplike dependence of the scattering rate on electron 
energy.18 Figure 3 also shows the calculated emission rate for an electron in 
a magnetic field of 10 tesla as the grey curve. At this field the radius of the 
                                         
b Bold face will be used for vectors and normal type for scalars, so q = |q|. 



 
1
0
 

classical electron orbit is only 81Å, giving a one dimensional quantization 
energy of 17meV in GaAs. An electron confined to one dimension has an 
energy density of states which is proportional to E–1/2 and thus diverges at 
zero energy. As a consequence, the phonon emission rate diverges for 
electrons with kinetic energy equal to the phonon energy19, or with energy 
one phonon above the bottom of one of the magnetic sub-bands (Landau 
levels). Although this divergence is not disastrous, it should be a hint that 
something interesting may happen.  

In addition to phonon emission and absorption, the electron-phonon 
interaction can change the effective mass and propagation velocity of the 
electrons themselves. These properties are given by the electron's dispersion, 
or energy-momentum, relation. The energy shifts of the electron states 
induced by the electron-phonon interaction can be calculated using 
perturbation theory. This is done by keeping terms to 2nd order in the 
perturbation, resulting in the standard formula 

 

∆Ei = ∑
f

 
|•i|He-ϕ| f®|2

(Ei–Ef)   . (10) 

 
For the unshifted state at kLO ,the number of states for which the 
denominator of this expression is close to zero gets very large in one 
dimension. Thus the energy shift becomes very large (it diverges), making 
the energy negative.20 This is not possible physically, and indicates that  the 
first order  treatment of this problem fails to properly describe the behavior 
of one dimensional electrons near the phonon emission threshold. Figure 4 
shows the behavior of the energy-momentum relation of the combined 
electron-phonon system in the presence of the electron phonon interaction. 
The solid curves give the energy momentum relation with the interaction 
turned off. For energies below the phonon energy, there can be no phonons 
in the system, and the electron must take up all the momentum. Above the 
phonon energy, a phonon can exist, and since the energy of an optical 
phonon is roughly independent of its momentum, the momentum of the 
electron is no longer specified. Thus, there is a continuum of one-phonon 
states above the phonon energy. When the interaction is turned on, the zero-
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phonon and one-phonon states can mix in ways that allow the interaction to 
lower the total energy of the state. 

To understand the behavior of one dimensional electrons near the 
phonon emission threshold, I calculated the energy-momentum relation for 
the coupled electron phonon system using a technique which did not depend 
on the strength of the interaction. I chose to use the Variational Method, in 
which one chooses a parametrized wavefunction, calculates the energy, and 
then varies the parameters so as to minimize the energy. The Variational 
Principle then tells us that the energy of the correct state must be lower than 
the minimized energy. The trick to doing an accurate variational calculation 
is to construct the trial wavefunction in a clever way. A detailed description 
of the variational calculation is given in Appendix I. The basic assumptions 
and approximations are as follows: 

• Since I'm interested in one-dimensional electrons, I consider the 
large magnetic field limit. If the magnetic field is large enough to make 
the cyclotron energy larger than the energy shifts due to the interaction, an 
accurate calculation can use a trial wavefunction which includes only the 
contributions of the first Landau level.  

• A Fröhlich Hamiltonian is used the calculate the interaction 
between electrons and phonons. The phonon energy is thus assumed to be 
independent of its momentum.The Hamiltonian of (7) must be modified 
slightly to take into account the fact that the electron states in a magnetic 
field are no longer plane waves. This involves computing matrix elements 
of the phonon plane waves between the Landau wavefunctions for the 
electron states. (The Landau gauge for the magnetic vector potential is 
easiest to use for this purpose.) 

• The effects of finite temperature and other broadening are ignored. 
Thermal phonons are also ignored. Since the Debye temperature is  145°C 
this assumption is certainly good at liquid nitrogen temperatures and 
below. 

• The trial wavefunction includes contributions from states with two 
independent phonons. It is relatively easy to include one phonon, and a 
variational calculation using one phonon results in the same expression as 
does “Wigner-Brillouin perturbation theory”21. The Wigner-Brillouin 
expression substitutes Ei–∆Ei for Ei in equation (10). It works extremely 
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well for calculating the energy shift at k=0 because there simply isn't 
enough energy to allow states with more than one phonon to contribute. 
At the phonon emission threshold, however, the contribution of 2-phonon 
states to the energy shift is as strong as the contribution of one phonon 
states to the energy shift at k=0. Figure 4 shows why this is a problem. 
The energy-momentum curve calculated by Wigner-Brillouin perturbation 
theory (one of the dotted curves) bends over and “pins” at the phonon 
energy. However, this is more than one phonon energy above the k=0 
energy which has also shifted down due to the interaction. Thus a k=0 
polaron (which is a k=0 electron with a cloud of one-phonon, one electron 
states around it) plus a phonon have less energy than the “pinned” polaron 
(which, in the same language, is a large wave vector electron with a cloud 
of one-phonon, one k=0 electron states around it). If 2-phonon states were 
allowed to contribute, a pinned polaron would consist of a large wave 
vector electron with a cloud of one-phonon plus k=0 polaron  states. The 
two phonon calculation should thus predict that the energy momentum 
curve pins at one phonon energy above the shifted k=0 energy. This is 
indeed what happens, as indicated by the curve labeled “this variational 
calculation” in figure 4. 

 
Although the calculation is done for the case of a large magnetic field, 

it is easy to see that it has a very close analog in real one dimensional 
structures. Consider the potential  
 

V( r) = 
➹2

 m*L4  (x2+y2)  (11) 

 
where L is a characteristic confinement length. This parabolic potential is 
actually what is expected in many realizations of one dimensional 
confinement. Using this potential in the Schrödinger equation results in the 
eigenstates  
 

| nx,ny,kz〉 = 
Cnx

Cny

Lz
 eikzze–(x2+y2)/2L2 Hnx

(x/L)Hny
(y/L)  (12) 
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where the Hn's are again Hermite polynomials, and   
 

Cn=(2nn! πL)–1/2 (13) 
 

are normalization constants. E0 = ➹2

m*L2 is the energy spacing between the 

sub-bands. Notice the close similarity between these wavefunctions and the 
magnetic field wavefunctions in given in equation (1). (The confinement 
length L has been chosen to emphasize the similarity.)  It turns out that the 
electron-phonon interaction Hamiltonian expressed in terms of these 
electron wave functions is almost identical for magnetically confined 
electrons and electrons confined by the one-dimensional parabolic potential. 
(See Appendix 1) 

The result of the calculation is shown in figure 5 for the region just 
below the phonon energy. The calculated energy above the interacting 
ground state of the polaron is plotted versus the polaron wavevector. The 
bend-over and pinning of the energy-momentum curves is easily seen. The 
effect of magnetic field strength is also clear. For larger magnetic fields, the 
energy separation between the zero-phonon curve and the one-phonon 
continuum increases. This is because larger magnetic fields increase the 
density of states in each Landau level, and thus the number of electron states 
which contribute to the energy lowering is also increased.  

A polaron in the pinned region of the curve is a rather unusual particle. 
Its effective mass, defined as 

 

m* ≡ �2  ∂
2E
∂k2

 
–1

 (14) 

 
is negative, so that it slows down when “accelerated”. The group velocity 
(the velocity of propagation) is 
 

v = 
1
➹ 
∂E
∂k. (15) 

 
Figure 6 shows a plot of the velocity as a function of wavevector. Notice that 
the group velocity for the polarons in the pinned region is much smaller than 
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the velocities in the normal region. The wavefunctions for the pinned 
polarons consist mostly of states with one phonon carrying most of the 
momentum and a small momentum electron. These states are bound by the 
electron-phonon interaction to a zero phonon state with an electron carrying 
all the momentum. The binding energy holding this particle together is given 
by the energy separating the polaron curve from the one-phonon continuum. 
At large wavevectors, this polaron “gap” goes to zero. 

The pinning behavior of the energy momentum curve for polarons has 
been known theoretically for some time.It was predicted by Whitfield and 
Puff22  and by Larsen20 for polarons in three dimensional materials with 
strong electron-phonon coupling (α>1). Even for these strong coupling 
materials, the pinning results only in a cusp in the energy-momentum 
relation at the phonon energy. (The polaron gap goes to zero at finite 
wavevector). Very recently, Peeters et. al.23 have shown that the pinning 
behavior is much stronger for polarons confined to two dimensions. The 
strength of the pinning in strong magnetic fields was hinted at by the work 
of Larsen24 but the energy-momentum relation has not been calculated 
before the present work.  Despite this extensive theoretical work, physical 
effects of the polaron energy-momentum pinning have not been observed 
experimentally. A similar polaron pinning of Landau levels has been 
observed as shifts in cyclotron resonance lines.17 In this experiment, the 
energy of the second Landau level is observed to pin (as a function of 
magnetic field) at one phonon energy above the first Landau level. Do 
pinned polarons really exist? 

There are several ways that the polaron pinning might be observed 
experimentally. First of all, the low velocity of pinned polarons could be 
observed in time resolved transport experiments. The low velocity could also 
result in space charge pile-up in structures with narrowly specified electron 
energy distributions. The density of states at the phonon energy will also be 
strongly enhanced. (The one dimensional density of states is inversely 
proportional to the  group velocity.)  This may be observable in tunneling 
experiments. The existence of the polaron gap may also manifest itself as a 
change in the phonon emission rate in strong parallel electric fields. A 
polaron being accelerated by an electric field should behave like a normal 
electron until it gets up to the negative effective mass region. Then it should 
slow down, actually coming to a stop. The electric field should continue to 
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increase the polaron's momentum until the polaron gap becomes smaller 
than the natural broadening in the system. At this point emission of a real 
phonon, unbound to any electrons, should occur. Since optical phonons have 
finite lifetimes, the phonon lifetime broadening is one possible way for 
phonons to be emitted across the polaron gap. In GaAs, the optical phonon 
lifetime is less than 10ps25, which results in a lifetime broadening of 
0.1meV. In large electric fields, broadening due to field emission must also 
be considered. This can be estimated by calculating the voltage drop across 
the “size” of the polaron. There is a difference, however, in the process of 
phonon emission across a gap, and the usual phonon emission process 
described by Fermi's Golden Rule. The pinned polaron does not gain any 
energy  until it crosses the gap to emit a phonon. In the absence of a gap, an 
electron continues to gain energy from the electric field. Even in a large 
electric field, where the gap may not be able to appreciably slow the polaron, 
the gap will have the effect of increasing the phonon emission probability 
with respect to the probability that the electron would continue to propagate 
without emitting a phonon. The result will be that a polaron gap will 
enhance phonon emission. This effect could show up in transport 
measurements which are sensitive to the energy distribution of electrons. If a 
polaron gap exists, the cooling of electrons by phonon emission may be 
enhanced.  

The next two chapters examine experiments in which the existence of 
polaron pinning might be observed. The first is an experiment revealing the 
magnetic field dependence of tunneling in GaAs/AlxGa1–xAs hetero-
junctions which was done a few years ago by Hickmott and co-workers26 at 
the IBM Research Center in Yorktown Heights. The second is an experiment 
which I have done to search for the effects of a polaron gap. 
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Figure 4. Schematic energy-momentum relation for the interacting single electron-
phonon (polaron) system obtained from second order perturbation theory, 
Wigner-Brillouin perturbation theory, and the present theory. According to the 
argument of Whitfield and Puff, the correct curve should bend over at the shifted 
phonon energy. The ground state energy shift is exaggerated for clarity. 
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Figure 5. Calculated energy-momentum relation for polarons near the phonon emission 
threshold for three values of the magnetic field. Energy is with respect to the 
interacting ground state energy. 
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Figure 6. Calculated group velocity along the magnetic field for polarons as a function of 
the wave vector for three magnetic fields. Above kLO, the velocity drops sharply. 
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3. Phonon Structure in Heterojunction Tunneling Experiments 

3.1 Experiments 
Tunneling in GaAs/AlxGa1–xAs heterostructures has become of great 

practical importance for several reasons. Resonant tunneling in double-
barrier structures has been observed to occur at very high frequencies,27 
which has raised hopes that such phenomena may form the basis for future 
high speed electronic circuits. Although the resonant tunneling mechanism 
has been recognized for decades,28  fundamental questions concerning the 
mechanisms of tunneling in heterostructures remain.29 Tunneling through 
single barriers is also of great technological importance, due to the use of 
these barriers in heterojunction field effect transistors (HFET's) and some 
varieties of hot electron transistors.30,31 One variety of HFET, the SISFETc    
(semiconductor-insulator-semiconductor field effect transistor)32,33,34 is a 
very close analog to the silicon MOSFET (metal-oxide-semiconductor field 
effect transistor) which is used by the millions in integrated circuits. In the 
SISFET, heavily doped n-type GaAs is used as the gate “metal”, undoped 
AlxGa1–xAs is used as an insulator, and very lightly doped GaAs is used as 
the semiconductor. Highly conducting inversion and accumulation layers 
can be induced at the semiconductor-insulator interface by application of 
appropriate gate voltage. The nearly ideal interface between GaAs and 
AlxGa1–xAs makes this a very attractive possibility for high speed GaAs 
circuits.  

T. Hickmott and co-workers at IBM Research Labs in Yorktown, NY 
were one of several groups who applied their expertise in the MOSFET 
structures to study the properties of the GaAs/AlxGa1–xAs SISFET 
structures.35 The capacitance-voltage (C-V) and current-voltage (I-V) 
characteristics of these devices could be analyzed using the same techniques 
used for Si/SiO2 capacitors to determine doping, insulator fixed charge, and 
barrier height. However, when they cooled the structures to helium 
temperatures to study the tunneling properties of thin (200Å) barriers, new 
                                         
c Also known as HIGFET (heterostructure insulating gate FET). 
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phenomena appeared.26 In magnetic fields greater than 5T, periodic 
structure was observed in the current-voltage curves. Current voltage curves 
measured by Hickmott et. al. are shown in figure 7. The period of the 
structure, 36 mV, matches the optical phonon energy in GaAs. As many as 
16 periods were observed for magnetic field perpendicular to the GaAs 
layers (parallel to the current flow),  while up to 30 periods were observed in 
magnetic fields parallel to the layers (perpendicular to the current flow).36 
The magnetic field also reduced the tunneling current, especially for the case 
of magnetic field perpendicular to current flow. An energy band diagram for 
the device studied by Hickmott et. al. is shown in figure 8. Since the barrier 
is very thin, and since the doping of the anode is only 1x1015cm–3, most of 
the applied voltage drops across a depletion layer where there are no free 
carriers and all the donors are ionized. In order to emit a phonon, an electron 
must first tunnel through the barrier,  then gain sufficient energy from the 
electric field in the depletion layer. In order to emit 16 phonons, the electron 
must transit the majority of the lightly doped layer, which is 1µm thick. 
Somehow, the emission of phonons in the lightly doped layer must affect the 
tunneling of electrons through the barrier.  

The interpretation of Hickmott et. al. was that the periodic structure was 
somehow a consequence of the sequential emission of polar optical phonons 
by  otherwise ballistic electrons in the lightly doped GaAs layer. They also 
suggested that the role of the magnetic field is primarily to freeze out the 
carriers37 in the lightly doped region, thus eliminating impurity scattering 
and allowing ballistic electron transport. The carrier freeze-out was also 
indicated by capacitance-voltage data. This interpretation of the periodic 
structure leaves several problems unsolved. First, the mechanism by which 
the phonon emissions affect the tunneling current is unclear. Because the 
current density in this experiment is very small, 0.2-100x10–6A/cm2, the 
space charge of carriers which only scatter by optical phonon emission is 
several orders of magnitude too small to account for the observed  
modulation of the current38. Also, it is not at all apparent why the structure 
persists at applied voltages which would correspond to 30 phonon emissions. 
If the sequential phonon emission hypothesis is correct, this would mean that 
the electron remembers its initial energy even after having emitted 30 
phonons.   
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The puzzling results of Hickmott et. al. spurred considerable theoretical 
and experimental work around the world.38-46 and focussed attention on 
previous experiments involving emission of phonons. Between 1958 and 
1966, many workers had studied oscillatory photoconductivity in 
semiconductors. (For a compilation, see reference 47.)  In these 
measurements, the intrinsic or extrinsic low-temperature photoconductivity 
of lightly doped materials ranging from silicon and germanium to InSb and 
CdS oscillated with excitation energy with period corresponding to optical 
phonon energies. Stocker47 showed that the oscillations were due to a 
dependence of the electron distribution function on injection energy and the 
fact that the electron energy relaxation occurred preferentially by optical 
phonon emission, but the mechanism by which the distribution function 
affected the conductivity was a subject of debate. Stocker also showed that 
the oscillations disappeared in large electric fields.  

In 1967, Katayama and Komatsubara48 reported observing oscillatory 
tunnel conductance in InSb-oxide-metal structures. The period of the 
oscillations, 25mV matched the longitudinal-optical phonon energy in InSb. 
The oscillations were seen only at 4.2K in structures with  low carrier 
concentrations (n=2x1014 cm–3). The only qualitative difference between 
the results of Hickmott et. al. and Katayama and Komatsubara is the 
different magnetic field dependence of the phonon structure. Hickmott et. al. 
see no phonon structure without magnetic field. Magnetic fields parallel or 
perpendicular to the current reduced both the tunnel current and the 
oscillations in the measurements of Katayama and Komatsubara. Katayama 
and Komatsubara gave two separate explanations for the oscillations.d   One 
explanation is that phonons emitted after the electrons tunnel through the 
barrier can scatter electrons in the cathode via the long-range Coulomb 
interaction. A slightly different explanation is that the density of states in the 
anode “is modulated by the electron-phonon interaction just as in the case of 
polaron-induced anomalies.” Essentially, this says that the possibility of 
multiple phonon emission allows more final states to contribute to the 
tunneling probability. However, this explanation is most certainly wrong. 
For electron densities of only 2x1014 cm–3 almost all the voltage applied to 
                                         
d Katayama and Komatsubara regard the two explanations as equivalent. 
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the device must drop across a depletion layer, just as in the case of 
Hickmott's GaAs/AlxGa1–xAs tunnel junction. Therefore the phonon 
emissions must be sequential rather than multiple. Phonon emissions which 
occur after the electron has tunneled cannot affect the tunneling probability 
directly because of the great improbability of time-reversing the individual 
emissions.49  

Cavenett50 published a more detailed study of InSb tunnel junctions in 
1972. He observed oscillations both in junctions made with oxide coated 
InSb and vacuum cleaved InSb crystals. Conduction in metal-InSb junctions 
occurs by tunneling at low temperatures; a Schottky barrier is formed on n-
type samples. Cavenett also made junctions from crystals with different 
carrier concentrations and  found that the magnitude of the oscillations was 
reduced for the higher carrier concentrations. He also found evidence in 
measurements using superconducting contacts that the conduction in the 
junctions with grown oxide occurred through pin-holes in the oxide. 
Conduction in junctions prepared by vacuum cleaving was probably very 
non-uniform as well, because the tunneling current expected through the 
2000Å (as measured by capacitance) thick depletion layer is negligibly 
small. Cavenett proposed that the mechanism responsible for the oscillations 
was similar to that more or less accepted for the oscillatory 
photoconductivity experiments: the tunnel junction injected mono-energetic 
electrons into the lightly doped semiconductor, where their interaction with 
the optical phonons resulted in electron distributions which depended on the 
number of phonons emitted. The large spreading resistances associated with 
pinhole conduction magnified the effect of the electron distribution on the 
resistivity. 

In light of these previous experiments, the phonon structure seen by 
Hickmott was not at all new.  What made his results so important was that 
he saw the phonon effects in single crystal heterostructures grown by MBE, 
in contrast to the InSb junctions, whose microscopic structure was largely 
uncontrolled. Still, there were significant differences which made it difficult 
to explain Hickmott's results in terms of the InSb tunnel junction results. The 
most important difference was the magnetic field dependence as discussed 
above. Also, the current densities in the devices were dramatically different. 
Hickmott saw his first oscillations at a current density of about 2x10–7 
A/cm2, while one of Cavenett's junctions conducted about 0.04A/cm2 at its 
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first oscillation. These differences, and the very different structures used 
suggested that the phonon structure seen by Hickmott was indeed something 
entirely new. 

Since Hickmott's work, several closely related experiments have been 
done. Lu, Tsui and Cox43 at Princeton University have studied indium 
contacts on high purity InGaAs. These measurements are much closer in 
spirit to the work on InSb than to Hickmott's GaAs experiments. The current 
densities are large and the magnetic field dependence is similar to that 
reported for InSb junctions. Lu et. al. did make one surprising discovery: 
they saw oscillations in both current directions! To explain this, they 
propose that the metal semiconductor contact is made through “micro-
channels” in the insulating native oxide, and that the conduction in these 
channels is one-dimensional. They appeal to the theoretical work of Kulik 
and Schekhter51 who note that when electrons emit phonons, they slow 
down, causing current singularities in one-dimensional channels.e   The 
oscillations are then thought to be caused by variations of the electron 
velocity in the micro-channels. Unfortunately, this explanation is 
implausible at best, because it requires ballistic transport of electrons in long 
channels which traverse an oxide that is at most 50Å thick. Even if such 
micro-channels formed, one would hardly expect them to conduct like bulk 
InGaAs, let alone ballistically. More likely, wide, ohmic pinhole contacts are 
made. The spreading resistance in these contacts is still likely to be large, but 
a mechanism similar to that proposed by Kulik and Schekhter may well be 
important, especially for the polarity where the electrons are sucked into the 
contact. The observation of oscillations in this polarity may also be a 
straightforward consequence of  the comparatively huge current densities 
(>1A/cm2) in the InGaAs contacts. The favorable properties of ohmic 
contacts of In to InGaAs may have enabled the observation of oscillations in 
forward bias. 

In more recent work, Lu, Tsui and Cox52 studied contacts to high purity 
InP. These contacts were rectifying, more like the InSb contacts. In addition 
to the usual optical-phonon related structure, the InP contacts showed a 
                                         
e It should be noted that current singularities can result directly from the velocity 
modulation without benefit of space charge effects as discussed below. 
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conductance “gap” at low temperatures. At voltages inside the gap, 
conductance was almost zero, while the current rose rapidly with voltage 
outside the gap. The gap vanished at temperatures above 10K, and widened 
with increased magnetic field, either parallel or perpendicular to the sample. 
This was attributed to the effects of carrier freeze-out. The binding energy of 
donors in the high mobility III-V semiconductors is of the order of 5meV in 
high purity material, so some electron freeze-out ought to occur at 
temperatures below 50K. In fact, freeze-out does occur in all of the devices I 
have discussed here.f  However, even at very low temperatures, the 
conductivity of most material remains quite high due to impurity conduction. 
In very high purity material, the impurity conduction can be very small. In 
the InP contacts, voltages smaller than the gap voltage are insufficient to 
ionize any of the frozen donors, and the conductance is negligible. Higher 
voltages can ionize the impurities, and current increases rapidly due to 
impact ionization in a process similar to avalanche breakdown. (This will be 
discussed in more detail later.) Since oscillations are observed after the 
breakdown, the mechanism causing the oscillations cannot require all the 
donors to be frozen out. This is also indicated by the fact that Lu et. al. 
observed that the conductance oscillations persisted to above 77K while the 
conductance gap related to freeze-out vanished at 10K. 

Soon after Hickmott published his work on GaAs/AlxGa1–xAs 
structures, Eaves and co-workers53,54,41 at the University of Nottingham in 
England reported that they had also observed the conductance oscillations in 
structures similar to those used by Hickmott et. al.. In their devices, 
however, the oscillations were observed without magnetic field. Although 
their structure was almost identical to that studied by Hickmott, the 
Nottingham devices were in many respects more similar to the InSb, InP, 
and InGaAs contacts discussed above than to Hickmott's devices. As in the 
contact work, magnetic fields parallel to the transport had little effect other 
than to reduce the overall current, while perpendicular fields tended to 
reduce the  amplitude of the oscillations. Also, the tunnel barriers in the 
                                         
f For example, the carrier density measured by Hall effect at 4.2K in Cavenett's work 
is a factor of 94 less than the net impurity density measured by capacitance-voltage 
sweeps. 
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Nottingham devices were only 168Å, so their current density was several 
orders of magnitude higher than in the Hickmott devices. Several new 
phenomena were observed by the Nottingham group. They observed two 
types of behavior on devices made from the same wafer. The “type B” 
devices were similar to the “type A” devices, except for a “shoulder “ on the 
I-V curves at low bias. Oscillations were observed both on and off the 
shoulder, but the shoulder oscillations were suppressed strongly by 
perpendicular magnetic fields. The Nottingham group also investigated the 
dependence of the oscillation amplitude on magnetic field in detail.55 Using 
voltage modulation techniques, they observed very narrow peaks in the 
second derivative signal. They then swept the magnetic field while 
maintaining the applied voltage at the top of one of these peaks. In contrast 
to the monotonic increase of the peak amplitude with magnetic field seen by 
Hickmott, the Nottingham group finds that the peaks are resonantly 
enhanced at a field of about 5.1T. They cite this as evidence that impact 
ionization of shallow impurities is the means by which phonon emissions 
create space charge. This will be discussed in detail in Chapters 4 and 5.  

Additional experiments have raised more questions than they have 
answered. Hickmott has continued his work on other phenomena in the 
GaAs/AlxGa1–xAs structures. He has reported56 one device with oscillations 
of period 30mV which can be seen without magnetic field and which are 
suppressed in strong magnetic field. Meanwhile, the Nottingham group has 
found oscillations which are only seen under strong magnetic fields in a 
sample made in InGaAs lattice-matched to InP57.(The InP and InGaAs play 
the roles of the AlxGa1–xAs and GaAs, respectively, in the Hickmott 
structure.) In this structure, the current density is similar to that in 
Hickmott's GaAs/AlxGa1–xAs structures. 

Campbell et. al.58 have very recently reported an experiment which 
proves beyond any doubt that ionization of shallow impurities are involved 
in high current density oscillations. They measured the far infrared photo-
response from neutral impurities (tuned to resonance with the excitation 
wavelength by a magnetic field) in the un-depleted layer of a structure 
similar to that used by the Nottingham group. Phonon oscillations are seen 
without magnetic field, and the current densities are similar to those at 
Nottingham. They see oscillations in the photo-response with applied 
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voltage, indicating that the fraction of neutral donors oscillates along with 
the tunnel conductance.  

0.0 0.1 0.2 0.3 0.4
0

10

20

30

Voltage (V)

Cu
rre

nt
 D

en
si

ty
 (µ

A/
cm

2)

14T

0T

T=1.7K

0.0

0.2

0.4

0.6

0.8
Ratio (14T/0T)

 

Figure 7. Current density versus voltage measured by Hickmott et. al. in tunnel barrier 
heterostructures, for magnetic fields of 0T and 14T applied parallel to current 
flow. Also shown is the ratio of the two current densities, to show the phonon 
structure more clearly. 
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Figure 8. Schematic energy band diagram for the tunnel barrier heterostructure measured 
by Hickmott et. al.. 
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3.2 Theories 
Given the wealth of experiments which show the participation of 

optical phonons in the transport across metal-semiconductor and metal-
insulator-semiconductor junctions, one might expect these systems to be 
well understood and uncontroversial. They are not well understood, and they 
have been very controversial. Since Hickmott's initial report on the 
oscillations, theories have become almost as numerous as theorists.  The 
problems the theorists have worked to address are roughly as follows: 

1. Are the “contact” effects the same as the tunneling effects?  
2. Why are magnetic fields required to see phonon structure in some 

devices? 
3. Why do magnetic fields suppress phonon structure in others? 
4. Should the orientation of the magnetic field matter? 
5. How does phonon emission affect tunneling currents? 
6. Why is there still phonon structure after as many as 30 phonons have 

been emitted? 
To answer these questions, theorists have taken a variety of approaches. As 
is often the case, common themes recur in several formulations. For 
example, some theories say that the tunneling effect and the contact effects 
are one and the same, while others say the two effects are unrelated. Some 
theories say that the magnetic field dependence of the oscillations is due to 
ballistic transport made possible by an absence of ionized impurity 
scattering when donors are magnetically frozen out. Several theories use 
space charge as a feedback mechanism to modulate the tunneling current. 
The large number of phonons observed can be explained by either electron 
energy coherence, in which the oscillations depend only on the electron 
energy, or phonon coherence, in which the number of phonons emitted 
determines the current modulation.  

Any theory of the phonon oscillations must deal with the phenomenon 
of magnetic freeze-out. This effect was first studied theoretically by Yafet, 
Keyes and Adams37. In strong magnetic fields, the cyclotron radius of free 
electrons becomes comparable to the Bohr radius of electrons bound to 
shallow impurities. For GaAs, where the Bohr radius is 102Å, the Bohr 
radius equals the cyclotron radius at a magnetic field of 6.3T. As the field 
increases, the bound electron's wavefunction is squeezed so that the electron 
is closer to the donor, thus increasing the binding energy. At low 
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temperatures, the increased binding energy can cause the free carrier 
concentration at thermal equilibrium to decrease sharply. For uncompen-
sated GaAs with 1015 cm–3 donors at 4.2K, the free carrier concentration 
without magnetic field would be 1.5x1012cm–3, while according to the 
calculation in ref. 37, the free carrier concentration should drop to 6x109cm–
3 for a magnetic field of 5T.  

Hickmott suggested that magnetic freeze-out was responsible for the 
appearance of the phonon structure at high magnetic fields. He assumed that 
under conditions of magnetic freeze-out, all the free carriers in the lightly 
doped GaAs layer were frozen onto donors. This assumption led to the 
ballistic transport hypothesis: magnetic freeze-out leads to elimination of 
impurity scattering. Hickmott made capacitance-voltage measurements 
which seemed indicate that the donors were indeed neutralized. The 
capacitance measures the thickness between conducting layers. Under 
normal conditions, this would be the sum of the barrier thickness and the 
thickness of a depletion layer, in which all the donors are ionized and the 
carriers are swept away by the electric field. The capacitance measurements 
at zero magnetic field yield a depletion thickness which indicates that all the 
donors were ionized. This conflicts with the expectation that some of the 
donors should freeze-out thermally. When magnetic fields were applied, the 
capacitance indicates a depletion thickness equal to the entire thickness of 
the lightly doped layer, regardless of the applied voltage. This would imply 
that the donors are neutral in the magnetic fields. However, this is unlikely, 
because the electric fields applied to the GaAs layer during the 
measurements are extremely large, on the order of 104V/cm, making it very 
likely that initially neutral donors are field-ionized by the measuring fields. 
This is confirmed by Hanna et. al.38, who note that complete donor 
neutralization is inconsistent with the measured tunnel currents. The division 
of the undoped layer into depleted and un-depleted layers is thus simplistic. 
Since the carriers are likely to be frozen out throughout the lightly doped 
layer, this layer should be divided into a high field layer, in which the donors 
are ionized, and a low field layer, in which the donors are un-ionized. The 
measured capacitance should then depend on the conductance of the low 
field layer. The effect of the magnetic field may be simply to change the 
conductance of the low field layer. Conduction in lightly doped material 
takes place by hopping between impurities. This process will be very 
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sensitive to the magnetic field. Thus the ballistic transport hypothesis is on 
very shaky ground because magnetic freeze-out does not eliminate ionized 
impurity scattering. Even if all the carriers were frozen onto donors, real 
materials will always be compensated to some degree, and the compensated 
donors are never frozen out. (Typical material grown by MBE has an 
acceptor background doping of between 1014 and 1015 cm–3.) 

Several mechanisms have been proposed to explain how the phonon 
emissions can effect the tunnel current through the barrier. In brief, they are 
modulation of the final density of states by the electron phonon interaction, 
contact heating, and space charge (which comes in several flavors). The 
density of states modulation was proposed by Ihm in 198542, although a 
similar proposal, discussed above, had been made previously for the InSb 
effects by Katayama and Komatsubara.48 Ihm treats the barrier together with 
the lightly doped layer as one big tunnel barrier in a scattering matrix 
formalism to show that the tunneling current depends on the density of final 
states. Because of the possibility of phonon emission, integral numbers of 
phonon energies could be subtracted from the initial electron energy to find 
the final energy. Because of a polaron interaction similar to that discussed in 
the Chapter 2, the density of states for a degenerate semiconductor has a 
sharp peak one phonon energy above the fermi level, and Ihm suggests that 
this peak should show up as oscillatory structure in the tunnel current. Ihm 
explains the magnetic field dependence by using the ballistic transport 
hypothesis, and indeed, he requires ballistic transport in order to be able to 
include the lightly doped layer in the tunnel barrier. Ihm's model is seriously 
flawed,49 even without the problems associated with the ballistic transport 
hypothesis, for the same reason that Katayama and Komatsubara's 
suggestion was flawed. Because the tunneling probability is very small, 
inelastic events which occur after the electron has tunneled can have only a 
small effect on the tunneling probability; the electron must tunnel back to 
change the current. Furthermore, when tunneling currents are calculated, the 
final group velocity of the carriers must also be factored in, and this tends to 
cancel the density of states term.  

A more reasonable hypothesis was suggested by Barker44. He proposes 
that the phonons emitted by the energetic electrons travel back to the 
cathode, where they heat up the sea of electrons. The heated electrons then 
have an increased probability for tunneling. This mechanism would give a 
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very neat explanation for the persistence of the structure to high biases, since 
the current enhancement would depend only on the number of phonons 
emitted (Thus phonon coherence). However, as pointed out by Leburton39, 
the optical phonons in GaAs have an extremely short mean free path, and 
would almost certainly decay into pairs of acoustic phonons before getting to 
the cathode. Only half of these would go the right direction to get to the 
cathode, and once there, they would have a much lower probability of 
interacting with the electrons. Also, the total power was as little as 10 
nW/cm2 when  Hickmott observed the oscillations. If this power were 
completely deposited in the cathode, the expected temperature rise should be 
less than 10–12K, assuming the usual lattice thermal conductivity of GaAs. 
For any reasonable coupling of the cathode electron temperature to the 
lattice, this temperature rise seems too small to cause the observed 
oscillations.  

The recent literature expresses a growing consensus that space charge is 
the correct mechanism allowing the phonon emissions to influence electron 
tunneling through the barrier. The simplest source of space charge would be 
the tunneling electrons themselves. Their space charge is inversely 
proportional to their velocity. The high fields close to the tunnel barrier, 
where the donors are all ionized, should cause the electrons to travel at the 
saturated drift velocity, and thus the space charge close to the barrier should 
be negligible. Away from this region, the electric fields should be very 
small. In this region the velocities of the electrons are determined by their 
energies. Thus if an electron is injected through the barrier with 2.5 phonon 
energies (above the Fermi level in the collector) and emits 2 optical phonon 
in the ionized donor region, in the low field region  it will have the velocity 
corresponding to 0.5 phonon energies. Since optical phonon emission is the 
primary energy loss mechanism for energetic electrons (until they get to the 
collector, where electron-electron scattering will very rapidly thermalize the 
electron), the energy of the electrons in the low field region of the lightly 
doped layer will depend almost entirely on the number of phonons emitted.  
In this way the space charge due to the carriers can depend periodically on 
the applied voltage, which determines the injected electron energy. The idea 
that space charge in the low field region is responsible for the oscillations is 
supported by the fact that  the oscillations disappear at the voltage at which 
the entire lightly doped layer must be ionized to terminate the electric 
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field.38,40 Furthermore, the bias dependence of the oscillation amplitude is 
modeled very well by assuming that the space charge is proportional to the 
thickness of this low field layer.38 

Unfortunately the space charge due to the carriers is about six orders of 
magnitude too small to explain the strength of the oscillations in Hickmott's 
experiments. For some of the point contact experiments, however, the carrier 
space charge may be an entirely reasonable explanation for the observed 
conductance oscillations. In those experiments the currents are not only 
much higher, but the current flow is believed to be very inhomogeneous, 
leading to much higher local current densities. The recent experiments by Lu 
et. al. are probably similar.  

Several other sources of space charge have been proposed. Leburton39 
has suggested that donors in the low field layer could be ionized by acoustic 
phonons created as decay products of the optical phonon emitted by the 
electrons. This mechanism shares the phonon explanation for coherence with 
Barker's contact heating hypothesis. Eaves40 has suggested that impact 
ionization of the same donors by electrons is the important mechanism. Here 
the strong dependence of the impact ionization rate on the electron energy 
leads to the oscillatory dependence of the conductance on cathode voltage. 
The recent results of Campbell et. al. show conclusively that donor 
ionization from some mechanism is involved in the oscillations, at least in 
the high current density devices similar to those report by the Nottingham 
group. The relative importance of the two ionization mechanisms can only 
be determined by detailed knowledge of the resulting ionization rates. 
Certainly the impact ionization hypothesis is much more traditional in terms 
of the mechanisms which have been used to explain transport in bulk GaAs 
of similar purity.59 Unfortunately, both of these explanations also require 
knowledge of the rates of electron capture by the donors to give a quanti-
tative theory for the oscillations. The actual space charge will depend on a 
ratio of electron capture and ionization rates. Since the electron capture 
process is poorly understood, Leburton must assume that the capture and 
ionization processes are identical. This allows him to cancel out the parts 
which are hard to calculate, and to obtain quantitative results in good 
agreement with experiment.  

Magnetic freeze-out fits very naturally into the donor ionization models 
to explain the magnetic field dependence of the phonon oscillations. Eaves 



 
3
2
 

considers the low-field layer as a series resistance which depends on the 
energy of the incident electrons, and proposes that in Hickmott's experiment 
the current density is insufficient to produce a significant ohmic voltage drop 
across this layer. Since magnetic fields are known to increase the resistivity 
of lightly doped GaAs by the freeze-out mechanism, one possible 
explanation of the magnetic field dependence in Hickmott's data40 is that the 
the currents are too small to give a significant voltage drop without the 
magnetic field. Although one can always describe voltage drops as ohmic, it 
seems rather unphysical that energetic electrons should feel the effects of 
freeze-out as an increase of the resistance, unless they are also frozen out 
somehow.  

A major problem with Eaves' model is the mechanism of coherence of 
the oscillations for large numbers of phonon emissions. Wang et. al.60 have 
done Monte Carlo calculations which show that because of the high electric 
fields near the barrier, the electrons do not all have the same energy as they 
enter the low field region. The phonon emission rate is not sufficient for the 
electrons to emit as many phonons as they might in the short time before 
they enter the low field layer. The spread of electron energies would thus 
strongly reduce any modulation of space charge dependent on electron 
energy. One possibility is that a polaron gap like that described in Chapter 2 
causes an enhancement in the phonon emission process, thus restoring 
energy coherence.  

One possible way to experimentally distinguish the mechanisms 
proposed by Leburton and by Eaves is to look for resonant processes. The 
phonon ionization process should be enhanced when the donor binding 
energy equals half of the optical phonon energy. This should occur at about 
53T, or lower if electron non-parabolicity is taken into account. Impact 
ionization should be enhanced when the cyclotron energy equals the donor 
binding energy (at about 5T). The observation of this enhancement by the 
Nottingham group is strong evidence that impact ionization, rather than 
phonon ionization, is the important process generating space charge in their 
devices.  

A closely related source of space charge was proposed by Hanna and 
Laughlin61. Instead of considering ionization of impurities, they pointed out 
that the capture process also depends strongly on electron energy.  The 
capture rate should fall off very quickly with electron velocity, so that only 
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electrons with very small energy can be captured. This mechanism does not 
suffer from the energy coherence problem because although the electron 
energies are widely spread, the distribution functions calculated by Monte 
Carlo techniques have sharp peaks at multiples of the phonon energy below 
the initial energy.60 When the applied voltage is such that a sharp peak 
occurs at zero energy, the density of electrons available for capture will rise 
sharply. As mentioned earlier, the capture process is poorly understood, and 
little progress has been made in quantifying this process.   

I proposed a very different source of space charge.46 Using the 1-
dimensional polaron model described in Chapter 2, I noted that electrons 
with almost a phonon energy could form pinned polarons with very small 
velocities, especially when large magnetic fields were applied. When the 
pinned polarons formed, their space charge could be quite significant. The 
electron energy coherence is a natural result of polaron gaps in this model. 
Hanna, Laughlin and I used this idea to build a quantitative model for the 
conductance oscillations.38 In this work, we combined the slow polaron idea 
with a model of inhomogeneous current flow through the tunnel barrier. We 
called this the “window model” because we supposed that almost all the 
current would flow through a thin spot in the tunnel barrier. The evidence 
that this is the case came from a detailed analysis of the current-voltage data 
taken by Hickmott. For the very small biases dropped across the tunnel 
barrier in these experiments, the tunneling current should theoretically be 
proportional to the square of the electric field at the barrier, which, using the 
usual depletion physics, is in turn proportional to the square root of the 
applied bias. Therefore, the current should be linearly proportional to the 
applied voltage. The actual measured current, shown in figure 7 is 
proportional to the square of the voltage for low biases, changing to linear 
for larger biases. We were able to model this behavior to very high precision 
using the window model. The crossover from quadratic to linear behavior 
should occur at a voltage which measures the size of the window (about 0.75 
µm in radius). Recent data, particularly those relating the phonon 
oscillations to impurities, have indicated that slow polarons are probably not 
an important source of space charge in these experiments, however, the 
window model may prove to be needed to give better quantitative agreement 
of other theories to experiment. The factor of 10,000 increase in current 
density makes many of the other space charge theories more reasonable. The 
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observation by the Nottingham group of the type A and type B behaviors in 
their tunnel junctions is also very suggestive of inhomogeneous transport. 
The origin of the thin spots is a significant mystery remaining in the window 
model, however. 

The role of the orientation of the magnetic field has largely been 
ignored by most theoretical treatments. Magnetic fields perpendicular to the 
current flow enhance the phonon oscillations in some experiments, while 
they destroy the oscillations in others. In donor ionization models, the 
perpendicular magnetic fields might be expected to bind the electrons more 
tightly against the electric fields, thus enhancing the oscillations. The same 
would be true for free-carrier and slow  polaron space charge models. 
Perpendicular magnetic fields might be expected to damp the oscillations 
either by reducing the current density or by inducing Hall fields which 
destroy the energy coherence in samples with point-contacts or 
inhomogeneous tunneling. To account for both types of behavior will require 
different models for different experiments. 

We must regard the theoretical understanding of the phonon structure in 
the tunneling experiments as limited at best. There is some agreement that 
space charge in a low field layer is responsible for the structure. Although 
impact ionization of neutral donors appears to be involved in some of the 
devices,  the origin of the space charge in Hickmott's devices has not been 
determined. There is agreement that the deepening of the donor energy by 
the magnetic field has something to do with the magnetic field dependence 
of the effect, but that complete donor neutralization does not occur. And 
finally, it seem clear that inhomogeneous transport occurs in at least some of 
the experiments. Whether one physical origin can explain the entire range of 
experiments remains to be determined. Since the interesting physics appears 
to occur in the lightly doped GaAs layer rather than in the tunnel barrier, a 
closer examination of the transport processes in this material is warranted, 
especially in the case of longitudinal magnetic fields. The next chapter will 
describe experimental work on transport in lightly doped GaAs in large 
magnetic fields. 
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4. Hot Electron Transport in Parallel Magnetic Fields  

4.1 Motivation 
In Chapter 2, I discussed the possibility that strong magnetic fields 

could give rise to new, 1-dimensional transport phenomena by changing the 
way that electrons interact with and emit phonons. In Chapter 3, I discussed 
experiments in which new phenomena related to phonon emission were 
observed when magnetic fields were applied. I described an attempt to link 
the theory with the experiments, but the supporting evidence is less than 
overwhelming. While arguments can be made that energy coherence in the 
tunneling experiments requires some sort of polaron effect, it would be more 
satisfying if the one dimensional effects of Chapter 2 could be found in a 
new experiment. In addition, the heterojunction experiments point to 
interesting things happening in the high purity GaAs layer found in these 
devices. 

To investigate these possibilities, I decided to study electrical transport 
in bulk layers of high purity GaAs. By applying relatively large electric 
fields, I could study transport of energetic electrons, which is dominated by 
phonon emission. Magnetic fields could then be applied to look for 1-
dimensional effects. The rest of this chapter describes these experiments in 
detail. 

4.2 High Purity GaAs 
High purity material was necessary for these experiments for several 

reasons. In order to see the 1-dimensional effects, broadening due to 
impurity scattering must be small compared to the relevant energies for the 
1-dimensional effects. These would include both the cyclotron energy and 
the polaron gap energies. The phonon effects for the heterojunction 
experiments also were most pronounced for materials with higher purity. 
The impurity freeze-out effects are known to be observable only for material 
with low impurity concentration, because of the possibility of inter-impurity 
conduction.  

Although molecular beam epitaxy has been used to grow epitaxial 
layers of relatively high purity GaAs, the background impurity concen-
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trations in these layers have usually ranged between 1014 and 1015 cm–3. 
Thus, the lightly doped layer used in the structures of Hickmott and of the 
Nottingham Group is roughly the lowest doping which can routinely be 
grown by MBE. At this doping level, the compensation by background 
impurities is expected to vary significantly from MBE machine to MBE 
machine and even from run to run in a single machine.  

The MBE group at Stanford has made a considerable effort to stretch 
the limits on purity imposed by MBE.62 The predominant background 
impurity species for clean GaAs MBE systems is carbon, which incorporates 
as an acceptor under the usual growth conditions. Carbon persists in an ultra-
high vacuum environment in the form of hydrocarbons and carbon 
monoxide which are particularly common and difficult to remove from the 
vacuum chamber. To reduce the carbon background in our MBE system, 
standard bake-out techniques were pushed to their limits. For example, the 
furnaces were fired at 1600°C for several hours. The opening time for the 
chamber was kept to a minimum. The uncooled source area was heated 
overnight by firing furnaces to 748°C. The bake-out of the vacuum chamber 
itself was extended to more than a week, and careful insulation of the bake-
out shrouds allowed us to push the temperature of this bake to 211°C, as 
measured at the substrate heater thermocouple. The outer surface of the 
vacuum chamber was discolored slightly by the bake. After the bake-out 
process, the principle residual gases were not carbon and oxygen, as is usual, 
but rather chlorine, which was introduced by the procedure we used to clean 
our gallium source material.  

Apart from system cleanliness, the principle limitation to the purity of 
MBE GaAs has been the purity of the source materials. We used a 8Nm 
grade frozen gallium ingot obtained from Allusuisse, and a solid slug of 
6N+m grade pure arsenic manufactured by Furukawa. Despite the fact that 
this source material was the best available, we found that after reducing the 
residual carbon in our chamber, we were limited by impurities in the arsenic. 
These were identified as sulfur, which is a shallow donor in GaAs.63 
Temperature dependent Hall mobility measurements indicated that our best 
nominally undoped material was n-type with a donor concentration of about 
1.5x1014cm–3, and a background acceptor concentration of only 
2.5x1013cm–3. The peak mobility measured in this material was 216,000 
cm2/Vs at 46°C, which is the highest mobility ever reported for GaAs grown 



 
3
7
 

by MBE. To obtain the low donor concentration, this layer was grown with 
an arsenic flux which was the minimum required to obtain arsenic stabilized 
growth. Detailed information about the growth procedure is given in 
reference 62. 

Other factors probably played a very important role in the achievement 
of this high mobility GaAs. The Stanford MBE system was one of the first 
to be equipped with a substrate holder compatible with 3 inch substrates and 
direct radiative substrate heating.64 The new method of mounting and 
heating substrates is much cleaner than the older method of soldering 
substrates with indium and heating them conductively. Contaminants 
dissolved in the liquid indium during the soldering procedure can reduce the 
purity of epitaxial material. Even with the indium free holders, significant 
amounts of contamination are carried into the growth chamber on substrate 
holders. After they are loaded into the MBE system load lock, substrates are 
heated under vacuum to desorb water, oxygen and other surface 
contaminants. We found that increased pre-heat temperatures and times 
resulted in significantly improved epitaxial layers. In one experiment, 
modulation-doped layers were grown on substrates which had been baked 
out at 400°C for 1 hour. The two wafers were then baked at 695°C and at 
400°C, respectively, for an hour under arsenic flux in another chamber. The 
resulting mobility was 138,000cm2/Vs at 77K for the wafer which had had 
the extra 695°C pre-bake, compared to 99,000cm2/Vs for the wafer with 
400°C bake. Substrate handling procedures and hardware which prevented 
substrate holders from touching anything other than cleaned metal surfaces 
also substantially improved the general material quality produced by the 
MBE system. 

For the transport experiments, I grew a 3.0µm thick layer of GaAs with 
nominally 1x1015cm–3 of silicon doping. This doping was chosen to be the 
same as that used in the lightly doped layer of the heterojunction 
experiments, and because lighter doping would have required the growth of 
a much thicker layer, which would have complicated the subsequent 
processing. This substrate was outgassed at 467°C for 30 minutes and then 
at 695°C for 5 minutes in the load chamber. The surface after this treatment 
was slightly cloudy, probably due to preferential arsenic loss. After the 
substrate was transferred to the growth chamber, its temperature was 
measured as a function of heater power using infra-red transmission 
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spectroscopy.65 During this process, the substrate was exposed to a flux of 
arsenic, and the surface became shiny again.  A streaky RHEED pattern 
showing a reconstructed surface indicative of a smooth, clean surface was 
observed before any GaAs was grown. The substrate temperature during 
growth was  645°C, the As/Ga flux ratio was 13 (gauge pressure) and the 
growth rate was 1µm/hr.  

The actual thickness of the layer was determined by the angle-lap and 
stain technique to be about 3.04µm. Hall measurements using a sample of 
the van der Pauw geometry indicated a sheet carrier density of  3.4x1011cm–
2 at room temperature and 4.2x1011cm–2 at liquid nitrogen temperature. The 
higher carrier density at 77K may be due to ionization of deep traps in the 
substrate or at the growth interface. Adjusting for the surface and substrate 
depletion,66 the carrier concentration is determined to be 2.43x1015cm–3 at 
77K. The mobility was 7780cm2/Vs at room temperature and 56,700 cm2/Vs 
at 77K. Using the calculation of Wolfe et. al. .67 this mobility would indicate 
a compensation ratio of 1.3 and a background acceptor concentration of 
4x1014cm-3.  

5µm 
wide

Au/Ge/Ni/Ti/Au
Ohmic Contact 
Metal

50µm
5 µm high
GaAs Mesas
n=1e15/cm3

 

Figure 9. Layout of the GaAs resistors used in this study. Current is forced through the 
tapered end contacts, while electric fields are measured with the side contacts. 
The structure is isolated by the semi-insulating substrate. The lines of ohmic 
contact metal go to bonding pads at the edge of the chip. 

4.3 The Experiment 
 In order to apply high electric fields to the GaAs layers while 

minimizing power dissipation and applied voltages, the epitaxial layers were 
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patterned into small resistors with tapered current contacts at the ends and 
small arms along the side for parallel and transverse field contacts. The 
layout for the resistor is shown in figure 9. Photoresist was patterned into the 
hourglass resistor shapes with necks 10µm (mask) wide and 200 µm long. 
The spacing between the field contacts was 30 and 50 µm on either side. The 
photoresist was used as an etch mask for a 3:1:50 H3PO4/H2O2/H2O mesa 
etch. The final width of the resistor was 3.8µm on the top and 6.2 µm at the 
base, as measured by SEM.  AuGeNi/Ti/Au metallization was deposited and 
patterned by lift-off using a plasma hardened two layer resist. This metal 
layer was used both to make ohmic contacts to the doped GaAs mesas, and 
to form wire bonding pads. After an anneal of the ohmic contacts in H2 at 
450°C for 5 minutes, the wafer was diced. Dice with well formed resistors 
and no growth defects close to the resistors were selected for electrical test. 
These dice were then mounted in non-magnetic ceramic packages, and the 
appropriate pads wire bonded. The experiments described below used six of 
these resistors, all from the same wafer. These resistors were identical except 
for small variations in width. 

Electrical measurements were done at liquid helium and at liquid 
nitrogen temperatures. Packaged samples were mounted with thermal grease 
in parallel and perpendicular field positions on a copper cold finger which 
was placed in the bore of a superconducting magnet. Temperatures near 
liquid helium were measured by carbon glass resistors mounted close to the 
samples. A calibrated GaAs resistor was used near liquid nitrogen 
temperatures. Currents were forced through the large contacts at the ends of 
the resistor, and voltages were measured at the side contacts using an 
electrometer with input impedance greater than 100 GΩ or using a 
multimeter with input impedance of 10 MΩ. For the perpendicular field 
configuration, the Hall (transverse) voltage was also measured. Current-
voltage data were collected automatically by an IBM PC-AT running 
ASYST data acquisition software, and then transferred to a Macintosh for 
data analysis and graph generation. 

Instabilities due to substrate effects made it impossible to reproduce the 
resistivity measurements precisely. At room temperature, the voltages were 
unstable above a critical applied voltage, typically about 40V. Measurement 
of significant zero-magnetic-field transverse voltages showed that this was 
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due to the injection of current into the substrate.g   Deep traps (named EL2) 
in the substrate are responsible for its semi-insulating character, but can also 
give rise to effects such as back-gating in MESFET's.68 Thus, when 
electrons are injected into the substrate, many of then can be trapped there, 
and thus change the amount of substrate depletion in an epitaxial layer. At 
room temperature, the instabilities due to the substrate injection have time 
constants ranging from a few milliseconds to a few seconds. At lower 
temperatures, the time constants are much longer, so that measurements are 
repeatable as long as no current is injected into the substrate. For this reason, 
the compliance voltage of the current source was monitored to avoid 
substrate injection at the contacts, and the measurement software was written 
so that the the resistor spent a minimum time under bias. However, substrate 
injection could not always be avoided, as it was desired to measure electric 
fields as high as possible. A backside bias to suppress the substrate injection 
was applied on some samples with intermittent success. Another technique 
was to use a light emitting diode to depopulate the traps in the substrate at 
low temperatures. 

At helium temperature, the substrate injection problems were even 
worse because of carrier freeze-out. This caused the substrate to have a 
resistivity similar to that of the epitaxial layer. Once a few of the impurities 
in the doped layer were ionized, however, the measurements proceeded 
easily.  

Contact freeze-out was another nagging problem for the measurements. 
Even at liquid nitrogen temperature, where the resistivity of the GaAs was 
relatively low, the ohmic contacts, when left alone for a while, would 
become very resistive. Usually this problem went away when currents 
flowed through the contacts. This problem became more serious at helium 
temperature, but light from the diodes usually allowed the measurements to 
proceed.   
                                         
g  Since the resistor itself is symmetric, the transverse voltage should be zero in the 
absence of a magnetic field. However, the metal lines from the field contacts wrap 
around the resistor in an asymmetric way, so that substrate current induces apparent 
transverse voltages. 
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Figure 10. Four-point current-voltage characteristic for a typical resistor, measured at 
93K without magnetic field. Data from two consecutive measurements (+ and x) 
show excellent repeatability. 

4.4 Results 
4.4.1 Current-Field Measurements 

A typical current-field characteristic at 93K with no magnetic field is 
shown in figure 10.  At low electric fields, the curve is linear, while for 
fields above 100V/cm, the differential resistivity increases. The two sets of 
data shown in figure 10 where taken consecutively on the same sample, and 
show excellent reproducibility. Other measurements made under the same 
conditions, but at different times were not so reproducible, because of the 
instabilities mentioned above. The low field resistance showed long term 
drifts of more than 50%. As an example, figure 11 shows a series of 
measurements under similar conditions for a single resistor. There is no 
systematic dependence of the resistance with temperature or any other 
measurement parameter. In order to interpret the current-field data without 
having to take into account the random variations in resistivity, I plot the 
logarithmic derivative of the current, ∂ln(I)/∂ln(E), rather than the current 
itself. Figure 12 shows the same data as in figure 11 transformed in this way. 
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A logarithmic derivative of one corresponds to linear behavior, while 
smaller values indicate sublinear behavior. Thus, the logarithmic derivative 
of the current vs. field curve can be termed the conductivity exponent. 
Figure 12 thus gives a much better picture of the relative shapes of the 
current-field curves without regard to the absolute magnitude of the 
resistivity. The conductivity exponent plots, unlike the current-field plots, 
are reproducible for a given sample. Note that the logarithmic derivative, or 
conductivity exponent, drops sharply at a relatively low field, and then has a 
shoulder between 100 and 500 V/cm. Figure 13 shows a similar plot for a 
second sample which was measured up to higher electric fields.  In addition 
to the initial drop of the conductivity exponent and the intermediate field 
shoulder, a second fall-off is seen in the conductivity exponent above 
500V/cm.  

Figure 14 shows two non-consecutive conductivity exponent plots for a 
single sample at 80K with a parallel magnetic field of 7T. Although the 
shape of the curves are similar to those observed without magnetic field, 
there are significant differences.  The current field curves are slightly 
superlinear at fields below about 100V/cm.  Figure 15 shows data measured 
on one sample at magnetic fields of 0T, 4.5T and 7T all on one plot. In this 
graph it can be seen that the second fall-off of the conductivity exponent in 
the high field region is only observed for zero magnetic field. Although it 
isn't indicated in the logarithmic derivative plot, the low field resistivity 
increases by about a factor of two from zero magnetic field to 7T. Since the 
electron mobility is not expected to change due to parallel magnetic fields, 
this is a clear indication that magnetic freeze-out is occurring, even at 80K. 

The effect of perpendicular magnetic fields at liquid nitrogen temper-
ature is best shown by calculating the mobility and sheet carrier density in 
the usual way. Figure 16 shows both the apparent Hall mobility and the 
sheet carrier density versus electric field for a magnetic field of 7T. A width 
of 5µm is assumed for the resistor, although the effective width is probably 
smaller. Since the Hall fields are at least ten times larger than the 
longitudinal fields for this high magnetic field, it is not clear that a standard 
Hall analysis applies. Both the mobility and carrier density are considerably 
smaller than measured at small magnetic fields. The current field 
characteristics are very non-linear at low fields. This behavior is shown in 
the logarithmic derivative plot in figure 17. Note again that no fall-off of the 
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conductivity exponent is seen at high fields. 
Current-field characteristics at liquid helium temperature were more 

difficult to measure reproducibly. Figure 18 shows a series of current-field 
curves measured consecutively without magnetic field, but with different 
current ranges and measurement intervals. The turn-on behavior appears to 
depend on the measurement interval, indicating a time dependence of the 
turn-on. Note that above the turn-on field, the curves are roughly resistive. 
This can be seen in the plot of the conductivity exponent in figure 19. The 
expanded plot in figure 20 shows the very large exponent measured at a 
critical field of about 4V/cm. 

When parallel magnetic fields were applied at liquid helium tempera-
ture, the field required to turn on the conductance increased dramatically, as 
seen by comparing figure 21 to figure 18. The turn-on voltages were very 
asymmetric for positive and negative currents. This indicates that significant 
voltage was dropped across the voltage contacts. (The current field curves 
had to be measured using the multimeter with 10MΩ input impedance 
because the  electrometer was too slow.)  
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Figure 11. Current versus electric field for a single GaAs resistor measured at several 
times. The low field resistance varies widely, even after accounting for the small 
temperature variations. 
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Figure 12. Conductivity exponent versus electric field for the data of figure 11. Despite 
the variation in the current field curves, all the data maps onto one curve. 
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Figure 13. Conductivity exponent versus electric field for a resistor which was 
successfully measured up to 1kV/cm. Note the second drop-off above 600 V/cm. 
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Figure 14. Conductivity exponent versus electric field for conduction parallel to a 7T 
magnetic field. Note the superlinear behavior (exponent >1) for fields less than 
100V/cm. The two curves are non-consecutive measurements of a single sample 
under identical conditions. 
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Figure 15. Conductivity exponent versus electric field for measurements of a single 
sample made in parallel magnetic fields of 0T, 4.5T and 7T. Note that the 
exponent falls below 0.6 for fields greater than 600 V/cm only for the 
measurements made without magnetic field. 
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Figure 16. Apparent Hall mobility and sheet carrier density as a function of electric field 
derived from the current field measurements in perpendicular magnetic field. A 
width of 5µm is assumed for the resistor, although the effective width is smaller. 
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Figure 17. Conductivity exponent versus electric field measured on a single sample with 
a 7T magnetic field perpendicular to the current. Note the wide variation in the 
superlinear behavior, which extends up to 600V/cm. 
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Figure 18. Current versus electric field at liquid helium temperature. The different 
measurements were identical except for the current step. Current flows above a 
critical field of about 4V/cm. 
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Figure 19. Conductivity exponent versus electric field at 4.2K. Weak superlinear 
behavior continues up to 100 V/cm. 
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Figure 20. Behavior of 4.2K conductivity exponent at low fields. The 4V/cm critical field 
is seen clearly as a sharp break-point in the curve. 
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Figure 21. Current versus electric field with 7T parallel to the current. The asymmetry of 
the curve may be due to voltage drops in the contacts. 

4.4.2 Magnetic Field Sweeps 
Sweeps of the magnetic field from 0 to 8.5T were made to get a better 

picture of the magnetic field dependence of the conduction at liquid helium 
temperature. By fixing the current and measuring sufficiently slowly, it was 
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possible to use the very high input impedance electrometer to do the field 
measurements, thus reducing voltage drops at the contacts.  These sweeps 
reveal a remarkable oscillatory longitudinal magneto-resistance. Figures 22 
and 23 show the measured resistance as a function of parallel magnetic field 
for two different samples at a variety of applied currents. In figure 22, a 
minimum is observed near 5T, while maxima are observed at 2.7T and at 
7.5T. There appears to be some hysteresis in the curves; this may indicate 
that the sweep rate, ~.5T/min, was too fast for the system to reach steady 
state. Similar structure is observed for a second sample measured in identical 
conditions, shown in figure 23. The .5µA curve in figure 23 resembles the 
5µA curve in figure 22, both in the shape and the magnitude of the 
resistance. A minimum between 4 and 5T is observed in the 2µA curve. In 
both samples, larger currents reduce the resistance and the amplitude of the 
magnetoresistance variation. A significant increase of noise in the voltage 
measurement was observed for magnetic fields above about 5T. 

Oscillatory magneto-resistance was only observed for parallel field 
geometries when the sample had a roughly resistive behavior above a critical 
field, and small zero-field transverse voltage. When the on resistance was 
very low, no reproducible structure was observed. Samples mounted in 
perpendicular field all showed significant zero field transverse voltages, 
indicating either substrate conduction or voltage drops in the contacts. The 
magnetoresistance (ρxx) for 2 measurements, sweeping magnetic field down 
and up, on one sample is plotted as a function of magnetic field in figure 24. 
Minima in the magneto-resistance similar to that seen for parallel field are 
observed between 4 and 4.5T, while a second minimum, occurs at about 7T. 
These curves can also be interpreted as having maxima at 3.3T, 5.2T and 
8.5T. Less pronounced structure is seen in the Hall voltage at the same 
fields. Figure 25 shows similar measurements on the same sample, but with 
a smaller current. A prominent minimum in both ρxx and ρxy occurs at 2.5T, 
while structures corresponding to those seen in figure 24 are very weak or 
absent. The apparent absence of the usual magnetic field dependent Hall 
Voltage is somewhat surprising as well. It may be a sign that conduction in 
open orbits along the sidewalls of the Hall bar may dominate the 
perpendicular field conduction when the bar is narrow. 

No magnetoresistance structure was observable in the same devices at 
liquid nitrogen temperature, or during measurements of much larger Hall 
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bars fabricated from the same wafer as the devices described above. The 
latter measurements appeared to be hampered by very large resistances in 
the voltage contacts. 
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Figure 22. Longitudinal magnetoresistance as a function of the magnetic field, for two 
applied currents. The two traces at the top are for magnetic fields sweeping up 
and down. 



 
5
2
 

0 2 4 6 8 10
0

20000

40000

60000

80000

10µA
2µA
0.5µA

Magnetic Field (T)

Re
sis

ta
nc

e 
(Ω

)

T=4.2K, 30µm contact spacing

 

Figure 23. Longitudinal magnetoresistance  as a function of magnetic field, for three 
currents, in a second sample. Note that the resistances are considerably lower in 
this second sample. 
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Figure 24. Transverse magnetoresistance, ρxx versus magnetic field for a current of 5µA, 
magnetic field sweeping down and up. 
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Figure 25. Transverse magnetoresistance, ρxx , and transverse (Hall) voltage versus 
magnetic field for a current of 1µA. 

4.5 Analysis 
4.5.1 Electron Heating 

The principal feature of the current-field characteristics measured above 
liquid nitrogen temperature in the absence of magnetic field is the increase 
of the resistivity with increasing electric fields. This behavior is well 
known69 and is due to the heating of electrons by the electric field. High 
field electron transport in GaAs has been of wide theoretical and 
experimental interest since the discovery of the Gunn effect at even higher 
fields. More recent work has concentrated on the possibility of transient 
velocity overshoot in moderate electric fields (3-10 kV/cm) which are 
quickly modulated either in time (<10ps) or in space (<500Å). The range of 
fields studied in the present work is properly referred to as the “warm” 
electron range, because the electrons are not hot enough to undergo the inter-
valley transfer processes which give rise to the Gunn effect. The lattice 
temperature range is “cold” because impurity scattering dominates in small 
electric fields. Surprisingly, the warm electron-cold lattice regime of 
electron transport has not been a subject of careful measurements or 
theoretical modelling. It lies in a combination of lattice and carrier 
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temperature ranges in which neither low-temperature nor high-temperature 
approximations apply. In contrast, the warm electron, warm lattice range has 
been studied extensively,69 but calculations are much simpler because both 
low and high field transport are dominated by lattice scattering. The usual 
low-field approximation used for the warm electron regime is a Taylor 
expansion of the mobility around its zero field value: 

 
µ = µ0 ( 1 + β E2) (16) 
 

where β is called the warm electron coefficient. Figure 26 shows a 
logarithmic derivative plot of the data from figure 10 along with a fit of 
equation (16) to the current-field data. The logarithmic derivative plot shows 
that the fit is poor for this range of electric fields. Monte Carlo calculations 
by Ruch and Fawcett70 which extend down into the warm electron regime 
are the only published quantitative calculations which apply.h   Since the 
published Monte Carlo calculation applies only for a specific set of sample 
parameters, we are without an established model with which to interpret the 
experimental data of Chapter 3. Instead, I will consider the behaviors of a 
few simple models for the effects of electron heating on the resistivity, and 
use them to sketch a qualitative picture of the transport mechanisms from the 
experimental data.  

Wolfe and Stillman71 have calculated the relative importance of various 
scattering mechanisms for the low-field electron mobility in high purity 
GaAs. The two most important mechanisms are ionized impurity scattering 
and polar-optical phonon scattering. At temperatures above about 100K, the 
phonon scattering dominates the mobility, while at temperatures below 
about 50K, the ionized impurity scattering dominates. The phonon scattering 
dominates at high temperatures because of the increased population of 
thermal phonons and because impurity scattering becomes less effective 
with increasing electron temperature. Energetic electrons, whether produced 
by large electric fields or by higher lattice temperatures are scattered less 
effectively by ionized impurities. However, they suffer additional scattering 
by processes which are not possible for less energetic electrons. The most 
                                         
h  The calculations of Ruch and Fawcett do not work well for warm electrons 
because the electrons transit the finite volume used for the calculation too quickly. 
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important of these processes is polar-optical phonon emission. Electrons 
with energy greater than 36 meV emit phonons at a rate of about 2x1013/s 
(see fig. 3). A model for warm electron transport must take this process into 
account.   

How can the phonon emission process be incorporated into a model for 
the warm electron mobility? The simplest picture of the low field mobility 
treats the scattering processes with a single scattering rate; electrons are 
accelerated by the electric field until they are scattered, after which they start 
with zero velocity again. For a scattering rate of 1/τ,  the fraction of 
electrons which have not scattered decays exponentially with time constant 
τ. The average velocity of  electrons in an electric field  E  can then be 
calculated by computing expectation values of the mean free path and mean 
free time in this distribution,  giving a mobility of  eτ/m*. This is the same 
obtained from the full solution of the Boltzmann transport equation in the 
relaxation time approximation. For the warm electron case, we can imagine 
a situation wherein the electron is scattered at a rate of 1/τ until it reaches 
some critical energy, and then immediately scatters.i   For phonon emission, 
this critical energy would be �ωLO, and an un-scattered (ballistic) electron 
would reach the critical energy and emit a phonon in τLO= 2m*➹ωLO/(eE  ) 
seconds. Doing the same type of calculation for the expected value of the 
mean free path and time as used for the single scattering rate model, the 
mobility is  

 

µ = 
eτ

  m*  
1 – (x2/2 + x + 1) e–x

1 – (1 + x) e–x  (17) 

 
where x = τLO/τ. A log-derivative plot of the current-field characteristic for 
such a model is shown as a solid line in figure 27. This model reproduces the 
general shape of the experimental data better than than the warm-electron 
coefficient expression, but cannot fit the low and high field behavior 
simultaneously. If we assume that optical phonon emission is the dominant 
process reducing the mobility at high field, we can use the fitted parameters 
in equation (17) to give a measure of τ, and the corresponding mobility. For 
                                         
i This sort of approach is in the spirit of the "lucky electron" model used by Shockley 
for hot electrons. 
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the fit of the data from figure 10 we get a low field mobility of 25,200 
cm2/Vs, which is in reasonable agreement with the mobility expected for the 
temperature of the measurement. One can modify the model to give any 
desired behavior throughout all ranges of electric field. For example, we can 
consider a “two scattering rate model”, which is similar to the abrupt 
emission model, except that it assumes a second, finite scattering rate for 
electrons which have gone un-scattered longer than τLO. For this model, the 
mobility is given by 

 

µ =  
e2τ
m*  

1 – e–x(1 – x(1–y) – y2)
1 – e–x(1 – y)  (18) 

 
where now y = τ'/τ ; 1/τ' is the second scattering rate. The grey curve in 
figure 27 uses y=2.6, and a low energy scattering rate corresponding to a 
mobility of 41,100cm2/Vs to fit the data from figure 10. Note in figure 27 
that while the low field behavior of the two-rate model is identical to the 
abrupt emission model, at high fields, a plateau in the conductivity exponent 
is observed. This is easy to understand by considering that at very high 
fields, the low energy scattering rate will be unimportant, and a return to 
ohmic behavior (and a logarithmic derivative of 1) is expected. A different 
choice of τ'/τ will change the level and slope of the plateau seen in figure 27. 
One can imagine more complicated models with multiple scattering rates to 
better match the observed current-field characteristics. One more such 
model, in which the scattering rate for energies above the phonon energy is 
assumed to rise linearly, is also shown as the dotted curve in figure 27.  

The point of these models is not so much to provide a glove-tight fit to 
the data as it is to provide some help interpreting the current vs. field data. 
They allow extraction of the mobility from current-field data without 
requiring any knowledge of the carrier density, or of the sample size. The 
rough agreement of these extracted mobilities with Hall mobilities measured 
on larger samples is a good indication that the interpretation of the non-
ohmic behavior in terms of electron heating and phonon emission is 
reasonable. It would be a mistake, however, to take these models too 
literally. Since the models are one dimensional, they ignore the effects of 
momentum perpendicular to the electric field. In a three-dimensional system, 
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the existence of perpendicular momentum will allow phonon emission to 
occur even with zero parallel momentum. To model this in one dimension 
would require a scattering rate which changed  gradually as a function of 
energy, even in the case where phonon emission was absolutely abrupt.  

The second drop-off of the conductivity exponent at higher fields is not 
predicted by any of the models described here. To fit this second drop-off in 
a similar model would require a second energy range of sharply increased 
scattering. This would require a scattering process other than the phonon 
emission process observed at the relatively low fields. It is well known that 
as electrons in GaAs are heated to energies above the L-valley minimum, 
they are quickly scattered to these L-valleys. The large effective mass in the 
L valleys then gives rise to reduced mobility and consequently, the Gunn 
effect. The electric field at which the drop-off occurs is consistent with this 
interpretation. Since the conduction in this field range depends on the 
relative populations of the L and Γ valleys rather than on scattering rates, it 
does not make sense to extend the sort of model discussed above to this field 
region. There are other difficulties in the interpretation of this high field 
data. For currents slightly higher than those used for these measurements, 
appreciable substrate current begins to flow. It should be no surprise that 
these two effects occur at close to the same current levels, since fields which 
allow significant valley transfer, and thus negative differential resistance, are 
inherently unstable. The possibility of substrate current also suggests a 
different explanation for the high field data: back-gating. Electrons injected 
and trapped in the substrate may change the interface depletion in the 
epitaxial layer, thus reducing the carrier density. This may explain the large 
spread in the measured logarithmic derivatives at high field shown in figure 
15. In either case, the high field drop-off in the logarithmic derivative can be 
interpreted as a direct or indirect consequence of the valley transfer of 
electrons in the epitaxial layer. 

As seen in figure 15, the high field current-field behavior seems to be 
modified by the application of magnetic fields. The plateau in the 
conductivity exponent of the current-field curves appears to extend well 
beyond 1kV/cm. (The low field behavior will be discussed below.) The 
origin of this magnetic field effect is unclear. One possibility is that this is a 
result of the phenomenon for which this experiment was searching, the 
formation of polaron gaps in magnetic fields. As discussed in Chapter 2, the 
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one dimensional confinement of the electrons in a magnetic field can give 
rise to large energy shifts for electrons with nearly the phonon energy. These 
shifts open an energy gap between zero-phonon states above and below the 
phonon energy, giving rise to an enhancement of the phonon emission rate 
for electrons with exactly the phonon energy. In moderate electric fields 
parallel to the magnetic field, this could give rise to enhanced cooling of the 
electrons, and thus a suppression of processes such as valley transfer which 
appear to cause the sharp decrease of the conductivity exponent for zero 
magnetic field. An enhancement of the phonon emission process might also 
be expected to show up in the initial fall-off of the conductivity exponent 
below 100V/cm. No dramatic effect is observed in this region, but the 
superlinearity at low electric fields might be expected to mask these effects. 
Although it seems surprising that such a small gap (0–5meV, depending on 
the wave vector) would remain significant at temperatures above liquid 
nitrogen (kT≈7meV), the details of how these wave vector dependent gaps 
would affect transport have yet to be worked out. If polaron gaps are the 
explanation for the sharp decrease of the conductivity exponent, then the 
lack of these decreases at 4K would suggest that the polaron cusp predicted 
for 3-dimensions has a larger effect on transport than previously thought.  

A second possible explanation for the magnetic field effect is based on 
the presumption that back-gating effects are directly responsible for the high 
field drop-off in conductivity exponent. If this was true, then the effect of a 
parallel magnetic field might be simply to suppress injection of electrons 
into the substrate, perpendicular to the magnetic field. This effect should not 
be present when the magnetic field is oriented normal to the substrate. The 
absence of a conductivity exponent drop-off in figure 17 would thus argue 
against this explanation. 

A third explanation is based on the coincidence of low field superlinear 
behavior and the extended high field sublinear plateaus. If the low-field 
superlinear behavior is due to ionization of neutral donors, as discussed 
below, then at higher fields inelastic scattering by the neutral donors may 
enhance the electron cooling, thus suppressing valley transfer just as for the 
case of the polaron gap. Although this idea has the appeal of unifying the 
low and high field behaviors, neutral donors appear to be ionized at low 
fields, and thus are not available to provide inelastic scattering at high fields. 

In summary, the high electric field measurements clearly show the 
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effects of phonon emission. The observation of changes in the conductivity 
exponent with magnetic field provides support for the existence of polaron 
gaps in large magnetic fields. However, alternate explanations for this effect 
must be seriously considered.    
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Figure 26. Comparison of experimental data with the warm electron expansion µ= µ 
(1+βE2) with β=(1/5.134V)2 fit to the data.  
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Figure 27. Comparison of experimental data with three models for the mobility described 
in the text. The abrupt scattering model assumes a single scattering rate until the 
electron reaches the phonon energy, whereupon it immediately scatters. The two 
scattering rate model assumes different scattering rates above and below the 
phonon energy. The ramped rate model assumes a linearly increasing scattering 
rate above the phonon energy. For each model, parameters have been chosen to 
give a best fit to the current-field data. The conductivity exponent plot accentuates 
the differences between theory and experiment.  

4.5.2 Freeze-Out and Impact Ionization 
The importance of impact ionization of neutral impurities for low 

temperature transport in high purity semiconductors has been known since 
the late 50's from work on p-type Ge.72 Superlinear current-voltage 
characteristics due to impact ionization of donors in GaAs were widely 
studied following the work of Oliver.73 These effects are observed only in 
material with impurity densities low enough that the conductivity through 
impurity bands is small, and only at temperatures where the electrons are 
frozen onto the shallow impurity levels. The current-field characteristics for 
such samples generally show a sharp turn on behavior at some critical field, 
where the donors become ionized. In closely compensated material, the 
current-field curve can even be S-shaped, resulting in current controlled 
negative differential resistance. The present experimental results shown in 
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figure 18,19 and 20 correspond closely to this previous work.  
The phenomenon of magnetic freeze-out was discussed in Section 3.2, 

and the observed increase of low field resistivity with increasing magnetic 
field was discussed in Section 4.4. The interaction of magnetic freeze-out 
and impact ionization was studied in some depth by Poehler,74 who 
measured current-field characteristics of GaAs epitaxial films at low 
temperatures in magnetic fields of up to 4.1T. He observed that the critical 
fields for impact ionization approximately doubled with a 4.1T magnetic 
field normal to his sample. Poehler used models for the impact ionization 
rates to extract donor binding energies as a function of magnetic field. He 
obtained binding energies significantly lower than predicted by Yafet, Keyes 
and Adams,37 and he attributed these differences to disorder broadening of 
the conduction band. Although the carrier concentrations in his films were 
the same as used in the present work, his total impurity concentration was 
more than 5 times higher. Poehler reported very little change in the critical 
fields for magnetic fields applied parallel to the current flow.  

The 4K experimental results described in Section 4.4 are similar to 
those reported by Poehler. The impact ionization is observed as a low field 
superlinearity in the current-field curves. While the critical field for impact 
ionization, taken to be 4V/cm in figure 20, is similar to Poehler's, no 
negative differential resistance is observed, consistent with the higher purity 
of the material used in this work. The electric fields measured for the present 
work extend almost 2 orders of magnitude higher than those used by 
Poehler. As seen in figure 19, the superlinearity at 4K persists up to about 
50V/cm. This suggests that processes involving the neutral donors continue 
to affect the transport at fields well above the the onset of impact ionization.  

The population of neutral donors during impact ionization is determined 
by a balance between ionization and capture processes. Since both impact 
ionization and capture processes (other than Auger processes) are linear in 
the carrier density, the fraction of neutral donors (in the absence of 
compensation) can be expressed as a simple ratio of rate constants: 

 
N

0
D

ND
  =  

RC
RI + RC

 (19) 
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where RC and RI are the linear capture and ionization rate coefficients, 
respectively. The turn-on of the conductivity at a critical field can thus be 
interpreted as a sharp increase in the impact ionization rate due to heating of 
the electrons above the donor ionization energy. The weak superlinearity up 
to 50V/cm means that either the ionization rate continues to increase with 
increasing field, or that the capture rate decreases with increasing field. Both 
of these effects probably occur, but detailed calculations of their relative 
magnitudes have not been done.  

The superlinear conductivity exponents measured in magnetic fields 
near 80K, seen in figures 14 and 17, are quite surprising. The superlinearity 
for transport normal to 7T extends to fields well above 500V/cm, an order of 
magnitude higher than at 4K without magnetic field, while in parallel 
magnetic field, weak superlinearity is seen up to 100V/cm. It is reasonable 
to assume that this superlinearity is related to the magnetic freeze-out 
observed in the low field conductivity, and has the same origin as the weak 
superlinearity below 100V/cm associated with impact ionization at 4K. 
While the parallel field data can be reasonably accounted for by the 
magnetic deepening of the donor, the strong enhancement of the 
superlinearity in perpendicular magnetic field must have a different origin. 
In any case, the data show that the ionization/capture balance is strongly 
affected by the orientation of a magnetic field relative to the electric field. 
The exponent drop-off associated with phonon emission also appears shifted 
to higher field in perpendicular magnetic fields, indicating that the magnetic 
fields are effective in suppressing carrier heating.  

The poor reproducibility of the measurements in the superlinear range 
is consistent with the mechanism of impact ionization. It has been 
demonstrated experimentally that large noise levels are a signature of impact 
ionization75, and that the current flow is unstable with respect to 
filimentation.72.  

 
4.5.3 Oscillatory Magneto-Resistance 

The structure observed in the magnetic field sweeps of the magneto-
resistance appears to be closely related to a phenomenon known as the 
magneto-impurity resonance effect. This topic was reviewed by Eaves and 
Portal76 in 1978. The phenomenon arises from inelastic scattering which 
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occurs when the separation between Landau levels becomes equal to an 
excitation energy of a shallow impurity level. The resonant scattering can be 
seen as very sharp structure, periodic in 1/H, when the resistivity is 
differentiated with respect to the magnetic field. Magneto-impurity 
resonances have been observed in n-GaAs, n-InP, p-Te, n-Ge and p-Ge, and 
a variety of different impurity excitation energies have been observed. 
Phonon structure is also observed in some measurements. Observation of 
these effects requires hot carrier excitation, either by photo-excitation or by 
electric fields large enough to get non-ohmic (warm-electron) conduction. 
Very high purity material is also necessary for observation of the effects. 
Most of the observed effects have been too small to be seen except in 
derivative spectra. In the case of InP, Nicholas and Stradling77 observed a 
resonance corresponding to the transition between the 1s ground state of the 
impurity and the conduction band which was intense enough to “be observed 
directly in the magnetoresistance without resorting to derivative 
techniques.”76 The largest magnitude resonances were reported by Zverev 
and Shovkun78 for GaAs excited by infrared radiation.  

Magneto resistance oscillations, periodic in 1/H, are also characteristic 
of the magneto-phonon effect79. This phenomenon involves resonances 
between the cyclotron energy and the phonon energy. The two 
magnetophonon series which are usually seen in in GaAs are the LO phonon 
series, with fundamental at 21T, and the 2 TA(X) phonon series, which 
involves emission of pairs of band edge phonons, with fundamental at 
11.4T. At low temperatures, these oscillations shift to higher fields by an 
amount corresponding to the donor binding energy, so that the resulting 
effect is a combined magnetophonon and magneto-impurity effect. The 
magneto-impurity resonances which have been observed in GaAs are the 1s 
to 2p- hydrogenic impurity transitions which come at fields lower than the 
fundamental at 2.4T. The 1s to conduction band transitions have been 
observed for InP80, but they have been mysteriously absent in the measure-
ments on GaAs.76 

In comparison to the previous work on the magneto-impurity resonance 
effect, the magnetoresistance structure reported here is very broad and huge 
in magnitude, comparable only to the oscillations in photo-excited GaAs 
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reported by Zverev and Shovkun.j   Oscillations periodic in 1/H are not 
observed. Since the electron concentration of the samples is significantly 
larger than for any previous magneto-impurity experiment, the breadth of the 
peaks is not surprising, and may wash out 1/H oscillations below the 
fundamental. The dependence of the position and amplitude of the the peaks 
and dips seen in figures 22, 23, 24 and 25 on measuring conditions and field 
orientation is rather complicated, but similar to what has been previously 
reported. The occupation of the shallow donors and their excited states 
depends critically on the electron temperature and field strength. For low 
electron temperatures, it is expected that the inelastic process with the 
smallest energy should be most important. This should be the 1s–2p– 
transition for the GaAs neutral donors. The sharp dip in magneto-resistance 
at 2.4T  seen in the low current sweep shown in figure 25 is almost certainly 
a resonance with this transition. The broad dips between 4.5T and 5T in the 
longitudinal magnetoresistance data can be attributed to resonances of the 
cyclotron energy with the donor binding energy. Calculations of the 
dependence of the donor binding energy81 on magnetic field indicate that 
this resonance should actually occur at a slightly higher field. This 
calculation is shown in figure 28, along with the cyclotron energy. Since the 
dips seen in all the present data are very broad, it seems reasonable that the 
dips between 4.5T and 5T correspond to resonances with bands of shallow 
excited states of the impurity which lie at fields just below the full 
ionization. Previous experiments would have resolved this dip into separate 
sharp structures in the 2nd derivative of  the magnetoresistance. The peak at 
5.2T in the perpendicular magnetoresistance , figure 24, is probably also the 
donor ionization resonance. Since current flows by scattering in 
perpendicular fields, conversion of the resonance from a dip to a peak is not 
surprising. Similar peak inversions have been seen previously.76 The peak at 
3.3T in the same plot might be due to the 1s to 2p0 transition. It is not clear 
why this transition should be seen instead of the 1s to 2p– transition seen at 
lower current. 

The structure observed at higher magnetic fields is quite a bit more 
puzzling. In figure 22 it appears that another minimum centered between 9T 
                                         
j The measurements by Zverev and Shovkun are also the only other magneto-
impurity measurements on GaAs done at 4K. 
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and 10T would come just above the high field limit of our measurements. 
Structure between 8 and 9T also is seen in figures 23 and 24. In previous 
work, all of the magnetoresistance structure above the magneto-impurity 
resonances has been attributed to magnetophonon resonances. However, 
neither the LO phonon nor the TA phonon pair magnetophonon series can be 
fit to the data, even if impurity shifts are taken into account. Pair excitations 
(ionization or excitation of two neighboring neutral donors by impact of a 
single electron) could produce peaks at the right fields, but only if 1s to 2p– 
transitions are paired with higher excitations. For an impurity density of 
1x1015/cm3, the mean nearest neighbor distance between impurities is 440Å, 
which implies that inter-donor coupling could occur for a significant fraction 
of the impurities. However, since the fundamental 1s to 2p– transition at 
2.4T is not seen in figure 22, it seems unlikely that pair excitation involving 
this excitation should be so important. The most likely possibility is that this 
magnetoresistance dip is related to a resonance between the donor binding 
energy and the X-edge TA phonon energy which occurs at 8.4T. This would  
be the first observation of this magneto-impurity-phonon resonance effect. 

The large magnitude of the oscillations observed in this study are both 
unusual and significant. No theoretical estimates have been made of the 
expected magnitude of this effect, and in view of the complicated 
dependence of the amplitude on measuring conditions, none are forth-
coming. The fact that the Soviet experimenters using photo-excitation 
observed effects of similar magnitude for similar carrier densities and 
helium temperatures suggests that these conditions are important factors in 
the magnitude of the effect. Still, the observation of donor ionization effects 
at current densities greater than 10A/cm2 and in electric fields higher 200 
V/cm allows us a significant insight into the transport properties of warm 
electrons in GaAs.  
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Figure 28. Calculated donor binding energy from reference 81 and cyclotron energy 
plotted as a function of magnetic field. Resonant impact ionization can occur 
when these curves cross at about 4.9T. Also shown are the TA phonon energy and 
the energy of the 2p– donor excited state. 
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5. Conclusions 

5.1 Heterojunction Tunneling The observation of phonon structure in 
heterojunction tunneling experiments provides specific information about 
the role of optical phonon emission in the magnetotransport properties of 
lightly doped GaAs, as discussed in Chapter 3. The presence of a tunnel 
barrier allows the hot electron distribution to be controlled external to the 
high purity GaAs layer. Similarly, the observation of impact ionization and 
other effects in experiments on bulk materials allows us to separate effects 
intrinsic to the tunneling process from bulk effects in the tunneling 
experiments. In addition, the magnitude of the observed effects can in each 
case provide information about which effects are likely to be important in 
the other. 
5.1.1 Impact vs. Phonon Ionization 

Since the magneto-impurity effect and possibly a magneto-phonon-
impurity effect are seen clearly in the magnetic field sweeps of the longi-
tudinal magneto-resistance of GaAs, the measurements of bulk properties 
might be expected to provide insight into the controversy over whether 
impact ionization or phonon ionization is the primary mechanism for the 
influence of phonon emission on space charge in the lightly doped GaAs 
layers of the tunneling structures studied by the IBM and Nottingham 
groups. While impact ionization has generally been accepted as the 
important process leading to superlinear current voltage characteristics of 
GaAs at low temperatures, the process of phonon ionization was not 
considered before Leburton proposed it as a mechanism in the hetero-
junction devices. This is because the phonon ionization process requires 
much hotter electron temperatures than impact ionization. The superlinear 
current voltage behavior begins at electric fields much too small to generate 
the energetic electrons required for phonon emission to become important, 
thus ruling out phonon ionization as the primary mechanism. However, hot 
electrons are injected directly into the lightly doped layer by the very large 
fields in the heterostructures, and thus phonon ionization cannot be ruled out 
as an important mechanism.  

The observation by the Nottingham group of a magneto-impurity like 
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effect in the dependence on magnetic field of the LO-phonon oscillation 
amplitude seems to confirm the role of impact ionization in the tunneling 
experiments. Although resonances of the donor ionization with the cyclotron 
energy at 5.1T (as opposed to the donor excitation at 2.4T) had not been 
previously observed in bulk measurements, the present work confirms that 
this resonance does indeed occur and even dominates the transport at large 
current densities and electric fields. Why then is there no enhancement of the 
oscillations at the same magnetic field in the data of Hickmott et. al.? One 
possibility is that impact ionization is not the dominant ionization 
mechanism for the very low current densities in the devices used by 
Hickmott et. al.. This conclusion is supported strongly by the results of bulk 
resistivity measurements. The threshold current density for impact ionization 
measured in the present experiments is far above the current density in the 
Hickmott devices. Also, the very sharp increase, and sometimes negative 
resistance, observed in the current-voltage curves at the threshold of impact 
ionization must be caused by an increasing dependence of the impact 
ionization coefficient on the current density. This is usually explained as 
being due to a 2-step ionization process. Presumably, phonon ionization 
might then be the dominant ionization mechanism at very low current 
density. To prove this, one might look for a magneto-phonon-impurity 
resonance in the heterostructure tunneling data, similar to that observed in 
the present bulk data. This should occur at about 53T (where 2ED(H)= ELO), 
or lower if conduction band non-parabolicity is taken into account. 

Coherence is still a problem with the impact ionization explanation. 
Can the impact ionization rate be so sensitive to the electron energy that 
even when most of the electrons are many phonon energies above the donor 
binding energy, as they are at high bias voltages in the tunneling 
experiments,60 the space charge of ionized impurities still shows oscillations 
with the periodicity of the phonon energy? The bulk measurements show 
that superlinear behavior characteristic of donor ionization persists even at 
high fields and high current densities, suggesting that the balance of neutral 
and ionized donors might be crucial even in the hot electron regime. The 
dependence of the impact ionization cross-section on incident electron 
energy was calculated for application to atomic hydrogen,82 and depends 
critically on electron energy only near the threshold. However, the equation 
for the neutral donor density, equation (19), also contains a capture term 
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whose dependence on the low energy electron distribution may account for 
the observed coherence of the oscillations. Another possibility is that the 
impact ionization probabilities are significantly altered by application of 
magnetic fields. This possibility is considered in Appendix 2. 
5.1.2 Current Inhomogeneity 

The observation of current-controlled negative differential resistance in 
bulk low-temperature measurements of closely compensated GaAs suggests 
a very natural mechanism which might lead to inhomogeneous current flow 
in the heterojunction tunneling experiments. Current flow in materials with 
current-controlled negative differential resistance is inherently unstable with 
respect to current filimentation.69 Since a tunnel barrier also has a highly 
nonlinear conductance, it would accentuate any current inhomogeneity 
originating in the lightly doped layer. Thus, models of heterojunction 
tunneling which consider donor ionization to be important should consider 
seriously the window model of Hanna et. al..38 A simple way to test the 
importance of current inhomogeneity induced by impact ionization would be 
to measure the amplitude of phonon oscillations in a set of samples with 
constant impurity density, but different degrees of compensation. If current 
inhomogeneity is important, the most compensated samples should show the 
largest amplitude phonon oscillations. 
5.1.3 Freeze-out 

 The role of freeze-out and magnetic freeze-out in the tunneling 
experiments is substantially clarified by examination of the bulk measure-
ments. At 4K, lightly doped GaAs of the same carrier concentration used in 
the tunneling experiments and of reasonably low compensation exhibits 
carrier freeze-out even without magnetic fields. At 80K, magnetic fields of 
4.5T are enough to cause some freeze-out, as evidenced by superlinear 
current voltage characteristics, and increased resistivities. The notion 
expressed by Hickmott et. al.26  that the capacitance-voltage measurements 
give directly the free carrier concentration is thus seen to be flawed. Their 
claim that all the donors remain neutral under magnetic freeze-out 
conditions is also contradicted by the bulk measurements of the resistivity 
during the magnetic field sweeps.  

The explanation by Eaves et. al.40 for the absence of phonon oscil-
lations without magnetic fields in the data of Hickmott et. al. is consistent 
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with the bulk measurements. At the small current densities of those 
experiments, the conductivity of the lightly doped layer due to impurity 
hopping is probably high enough to prevent significant voltage drops across 
it. The stronger localization of the bound electrons in a quantizing magnetic 
field can reduce this conductivity drastically. 

5.2 Pinned Polarons? 
The experimental work on phonon structure in heterojunction tunneling 

and on parallel magneto-transport of hot electrons has so far given little 
support for the existence of the one dimensional pinned polarons discussed 
in Chapter 2. The phonon oscillations appear to be related to ionization of 
neutral donors in lightly doped layers of the tunneling device, although 
enhancement of phonon emission by polaron gaps could possibly play a role 
in the remarkable persistence of the oscillations at voltages corresponding to 
tens of phonon emissions. The high field current-field characteristics of thick 
films show evidence for enhanced cooling in the presence of quantizing 
magnetic fields, and while a polaron gap is a definite possibility, other 
mechanisms appear to be equally likely.  

To find unambiguous effects of the polaron pinning in magnetic fields 
will probably require more elaborate experiments than those discussed here. 
One type of experiment would involve more direct methods of measuring 
drift velocities of mono-energetic electrons. This approach would avoid the 
problems caused by inter-valley scattering by injecting electrons well below 
the subsidiary valley minimum. The experiment could essentially be a time 
resolved version of the oscillatory photoconductivity experiments.47 
Alternatively, one can imagine doing hot electron spectroscopy83 with 
barriers on the phonon energy scale to study transport properties of pinned 
polarons.  

In general, though, it is hard to distinguish the properties of a pinned 
polaron from a low energy free electron in the presence of an uncorrelated 
LO phonon. The distinguishing characteristic is the binding of the electron 
to the phonon and the resulting negative effective mass. This characteristic 
suggests another possible way to observe pinned polarons. The negative 
effective mass should lead to a negative electrical conductivity. Thus if the 
pinned polarons were produced in sufficient densities, they might give rise 
to observable amplification of AC electric fields.  
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Postscript 

The heterojunction tunneling work of Hickmott et. al. has been a fresh, 
clean rediscovery of the point-contact and oscillatory photoconductivity 
work of the late 60's and early 70's, which, as pointed out by Lu et. al., was a 
solid-state re-invention of the Franck-Hertz experimentk  of the 1910's.84 
The theorists have responded to the renewed challenge with fresh, 
invigorated re-inventions of old theories (which were, in turn, re-
interpretations of older theories). The elimination of dirt, grime and surface 
oxides from the experiments has allowed the theory to probe deeper into the 
physics hidden in the data. (Theories, by design, are free of dirt and grime.)  

The polaron problem was invented and solved in the 50's. Its 
pathologies were recognized in the 60's, and the less virulent ones cured in 
the 70's. It was bold of me to tackle the divergences of the one-dimensional 
polaron problem but even more bold to think that it might matter. The 
experiments indicate that they probably don't matter much……yet. 

 
                                         
k In this experiment, the impact ionization energy of mercury atoms was determined 
by accelerating electrons through mercury vapor. When the accelerating voltage was 
equal to the ionization energy divided by the electron charge, the current was 
reduced. 
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Appendix 1: Variational Calculation of the Energy-Momentum 
Relation For a Polaron in a Strong Magnetic Field. 

 
The wavefunctions for free electrons in a magnetic field  H=H ✾✾❚ in 

the Landau gauge are:13  
 

|kx,kz,m〉 = 
1

Ω1/3Cm
eikxx+ikzze–Y2/2 Hm(Y)  (20)  

 
where Ω is the system volume, the normalization factors are Cm=(2mm! π
L)–1/2 the center of the wavefunction in the ŷ direction is at  

 

Y =  
y–kxL2

L      (21)  

 
the magnetic confinement length is  

 

L=
➹ c
eH  (22)  

 
 and the Hm(x) are the Hermite polynomials. These are energy eigenstates of 
the electron  Hamiltonian with  eigenvalues   

 

Ekx,kz,m = 
➹2kz

2   + (m+1/2)�ωc (23)  
 

where   
 

�ωc = 
eH

m*c  (24)  

 
 is the cyclotron frequency.  

The electron-phonon interaction is treated using the Fröhlich 
Hamiltonian,which is usually written with the electron in first quantization, 



 
7
3
 

   
He-ϕ  =∑

q

 Vqe–iq·r  (a†q+ a–q)  (25)   

 
where  

 

Vq=�ωLO
4πα 
Ω kLO

  
1
q  (26) 

 
and α is the dimensionless coupling constant:  

 

α =  
m*e2

➹2kLO(ε∞–1–ε0–1)–1  (27)  

 
and kLO= 2m*ωLO/➹ is the wave vector of an electron with energy �ωLO. 
The electrons have wave vectors r, while the phonons, with wave vectors q, 
have the creation and destruction operators  a†q and aq, respectively. With 
no magnetic field, the electron states are plane waves and each term in this 
Hamiltonian couples each electron state to one other electron state. With 
magnetic fields, each phonon couples every electron state to one electron 
state in each Landau level. This coupling can be written in second 
quantization by using the electron creation and annihilation operators 
c†

kx,kz,m  and ckx,kz,m  as follows:  
 

He-ϕ = ∑
m,m'

   ∑
q

 Vq ∑
kx,kz

 M
mm'
k,q  c†

kx–qx,kz–qz,m  

ckx,kz,m'  (a†q+ a–q) (28)  
 

 M
mm'
k,q  are defined as  matrix elements of the plane wave between the 

Landau states: 
 

  M
mm'
k,q   ≡ 〈 kx–qx,kz–qz,m|  e–iq·r |kx,kz,m'〉  (29)  
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We will only be interested in the lowest Landau level, so the matrix element 
is evaluated as   

 

M
00
k,q = e–iqxqyL2/2 eikxqyL2

 e–q⊥2L2/4 (30) 
 

where q⊥2 = qx2+qy2 is the component of the  phonon wave vector 
perpendicular to the magnetic field. The corresponding matrix element for 
the one-dimensional parabolic potential given by equation (11) is the same, 

but with out the phase factor eikxqyL2
.  

  An accurate calculation of polaron energies in a magnetic field which 
approach the phonon energy is difficult because of divergent integrals and 
has not been done previously. The  kz=0 energy and effective mass for 
polarons in a magnetic field has been calculated by variational techniques 
and applied to cyclotron resonance measurements.85,86,24  The Fröhlich 
Hamiltonian couples states in one Landau level to states in all Landau levels, 
making an exact calculation of energy shifts difficult. However, in strong 
magnetic fields the contribution of Landau levels other than the lowest will 
be small. If we choose a trial wavefunction composed only of electrons in 
the lowest Landau level, the problem is reduced to one in which the electron 
is effectively one dimensional. Although this will result in a poor value for 
the ground state energy shift for small magnetic fields such that �ωc is not 
much greater than α�ωLO, the true energy must be lower than that which is 
calculated.   

 The quasi-one dimensional polaron problem is still complicated for 
energies  near the phonon energy because an accurate description of the 
polaron wavefunction must include contributions from two phonon states, 
since almost enough energy exists to create one real phonon. Since a 
Wigner-Brillouin calculation can include only one phonon, the energy shifts 
it would give for energies near the phonon energy do not reflect the shift of 
the ground state energy. To include more than one phonon in the calculation, 
I have chosen to extend a variational method given by Larsen 20,24 but first 
used by Haga 87 for three dimensional polarons. The strategy is to solve the 
variational problem in two steps. First, build a variational wavefunction to 
describe the polaron at kz=0, then add in an extra phonon to describe the 
behavior for higher energies.  
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 An analog of the unitary  linear shift operator introduced by Low, Lee 
and Pines,88    

 
ULS = exp[∑

q
 fqgq (aq†– a–q)] (31)   

 
 is used to solve the kz=0 problem. Here fq is defined as a unitary operator  

 
fq≡∑

m
 ∑
kx,kz

 c†
kx–qx,kz–qz,m  ckx,kz,m   (32)  

 
which takes the x and z components of the momentum q from the electron 
and preserves Landau level. The symmetry g–q≡ gq is also built in. The trial 
wavefunction for kz=0 is  then ULSc†

kx,0,0 | 0〉, and we use the real 
scalars gq as variational parameters. Although this wavefunction includes 
many-phonon states, we have chosen to use it because it facilitates the 
addition of an independently variable phonon. Since ULS is unitary, the 
algebra involved in adding the additional phonon is considerably simplified 
compared to trial wavefunctions which contain only zero- and one-phonon 
states. The ground state energy can be evaluated as the expectation value of 
a transformed Hamiltonian ❞★≡ ULS–1HULS in the one-electron kz=0 non-
interacting ground state. Using the simple transformation properties ULS–1fq 
ULS=fq and ULS–1aq ULS = aq+gq fq, we  find the transformed non-
interacting Hamiltonian to be: 

 

 ❞★0 =  ➹2
 2m* { ∑

kx,kz,m
 kz2 c†

kx,kz,m ckx,kz,m +∑
q

  | 

gq|2 qz2   

+∑
q

 gq( a†q–a–q)(qz2fq –2qz ∑
kx,kz,m
  kz 

c†
kx–qx,kz–qz,m ckx,kz,m  )  
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+ ∑
qq'

 qzq'zf q+q' gq gq' (aq† aq'† + a–qa–q' –2aq'† a–q)}  

+ �ωc ∑
kx,kz,m
 (m+1

2)c†
kx,kz,m  ckx,kz,m  

+ �ωLO∑
q

 (aq† aq + fq gq (aq† +a–q) +|gq|2) . (33)  

 
A single electron is assumed, so two electron terms drop out and  f0=1.  The 
transformation of the interaction Hamiltonian is more complicated because 
the operator ∑

kx,kz

  eikxqyL2c†
kx–qx,kz–qz,m  ckx,kz,m'  does 

not have convenient transformation properties. However, in certain 
situations, the entire phase eikxqyL2 eiqxqyL2/2 can be replaced by one, and 
then the interaction Hamiltonian can be easily transformed. If this is done, 
and only states which have one electron in the lowest Landau level are 
considered, equations (28),(34), and  (31) can be used to find the 
transformed interaction Hamiltonian 

 

 ❞★e-ϕ =∑
q

 Vqe–q⊥2L2/4 ( ∑
kx,kz

 c†
kx–qx,kz–qz,0

ckx,kz,0  (aq†+ a–q)+2 gq )  (35)  
 

Since this Hamiltonian is used to calculate the energies of variational states, 
setting the  phase to one is equivalent to adjusting the phases of each part of 
the trial wavefunction so that this phase in the  interaction is canceled. Such 
an adjustment is possible for the one-phonon parts of the trial wavefunction 
because the phase drops out of the non-interacting Hamiltonian. Once the 
phases of the one-phonon parts are set,  it is not possible to completely 
cancel the phase for two or more phonon parts. A two-phonon state can 
interact with two different one-phonon states via the Fröhlich Hamiltonian, 
and a different phase is required for each of these because the interaction 
phase depends on  k. A compromise phase can be chosen, but as a result, the 
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effective strength of the interaction is reduced. In the trial wavefunction, I 
find that a phase can be chosen for the two-phonon states so that the total 
effective interaction with one-phonon parts is about 2/3 of the full 
interaction on average. Since the calculation applies to a weak coupling case, 
the contribution of two phonon states is relatively small, so it is not a bad 
approximation to ignore the phase entirely. The effect of this approximation 
is that the evaluated energy will be somewhat lower than the energy of the 
variational wavefunction. Note that for an electron confined in an analogous 
quasi-one dimensional quantum well, this approximation is not necessary. 
Using equation (35) to model the interaction allows an evaluation of the 
energy for the trial wavefunction. The ground state energy is shifted by 
∆E0=–α'�ωLO where  

 

α' = – 
2

➹ωLO
  ∑

q
 Vqe–q⊥2L2/4 gq – ∑

q
 (1+(qz/kLO)2) |gq|2 (36)  

 
 Minimizing the energy with respect to gq results in the expression  

 

 gq = – 
2m*

➹2   
Vq

kLO2+qz2 e–q⊥2L2/4. (37)  

 
The wave function  
 

ULS[d c†
kx,kz,0 |0〉 +∑

q
 dqc†

kx–qx,kz–qz,0

a†q|0〉] (38) 
 

is used to describe the polaron at large wavevectors. Now the gq's are fixed 
in the trial wavefunction, and the dq's and d are used as variational 
parameters. This trial wavefunction can correctly describe polarons near the 
phonon energy because it allows the strong mixing of the zero phonon state 
with the qz=kz one phonon states. If symmetry is used to set 
d–qx,–qy,qz

=dq, then the energy minimization proceeds exactly as in 

the three dimensional case with the result (compare Ref. 4, eq. 25)   



 
7
8
 

 
m*∆E(kz)

➹2  d = –kz ∑
q

  qzgq dq (39)  

 
and   

 
1
2(

2m*∆E(kz)
➹2  + 2kzqz–kLO2–qz2)dq = –kzqzgq d+qzgq ∑

q'
 q'zgq' 

dq'  (40)  
 

where   
 

E(kz) = 
➹2kz2

2m*   – α'�ωLO+∆E (41) 

 
is the energy of the polaron. Solving for the energy shift results in an 
implicit equation for the energy shift:   

 

∆ E(kz)=4






∆E(kz)

➹2kz2

m*  + 1
 ∑

q
 

➹2

2m*2qz2kz2(| gq|)2

∆E+ ➹2

2m*(2qzkz–kLO2–qz2)
. (42)   

 
Converting the sum to an integral,   

 

∆E = –αkLO3



➹2

π m* [ 
2m*∆ E
➹2  +2kz2]⌡⌠

0

∞

 q⊥ dq⊥ e–L2q⊥2/2  

x ⌡
⌠

–∞

+∞

 qz2dqz

(qz2+q⊥2)(qz2+kLO2)2 (qz2–2qzkz+kLO2–
2m*

➹2∆E)
 (43) 

 
The qz integral is done as a contour. The q⊥ integral is done 

numerically, and the entire expression  solved implicitly for ∆E. The results 
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of this calculation using parameters appropriate to GaAs (α≈ .07)17 are 
shown in figure 5  for the region near the phonon emission threshold, with 
energies measured relative to the interacting ground state energy. There is a 
significant energy lowering when k approaches kLO, and the energy 
approaches the LO phonon energy only asymptotically as k gets large. This 
bending over of the dispersion curve increases with increasing magnetic 
field or electron confinement, essentially because phonons with larger 
transverse momentum can contribute to the energy lowering. Because we 
have included more than one phonon in our variational wavefunction,  the 
energy pins one phonon energy above the shifted ground state energy rather 
than above the non-interacting ground state energy,  regardless of how we 
treat the multi-phonon phase problem.  
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Appendix 2: Calculation of the Dependence of the Impact-Ionization 
Rate on Energy above Threshold in Magnetic Fields 

Impact ionization involves two electrons in an impurity potential, and is 
thus complicated to treat theoretically. If the 2-electron subtleties of the 
problem are ignored, Fermi's Golden Rule can be applied in a straight-
forward way to calculate the impact ionization rates. In this context, it is 
known as the Born Approximation. The main difficulty in this method is is 
that the usual plane wave solutions for the free electrons must be replaced by 
the unbound solutions of the Schrödinger equation which incorporates the 
impurity potential. This becomes very difficult if strong magnetic fields are 
also included, and has not been done. However, it is easy to show the 
dimensional effect of the magnetic field in the threshold region by using a 
few approximations. 

The impact ionization rate of a neutral donor by an electron with wave 
vector k can be written, using Fermi's Golden Rule, as 

 

r(k) = 
2π
➹  ∑

k1,k2

 •k,0|He–e|k1,k2®δ (➹✒

2m* (k2–k
2
1–k

2
2) – 

ED). (44) 
 
In this expression, k1 and k2 are the wave vectors of the two electrons 
resulting from the ionization, and 
〈k
Error! enforces energy conservation, and is zero when the incident electron 
has insufficient kinetic energy to ionize the donor. 

What is the dependence on of the ionization rate on k just above 
threshold? In this region, both k1 and k2 must be small and have a small and 
slowly varying effect on the magnitude of the electron-electron matrix 
element. Thus, the primary factor determining the variation of the impact 
ionization rate with k will be the number of available final states. When the 
sum is turned into an integral, the energy delta function results in a factor of 
the energy density of final states. For three dimensional electrons, the two-
electron energy density of states is effectively that of a six dimensional 
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electron, and the energy density of states is thus proportional to the square of 
the energy. Thus, for incident energies very close to threshold, the impact 

ionization rate increases as the square of (➹
✒k2

2m  – ED).  
In large magnetic fields, electrons become one-dimensional, in that 

their energy depends only on one wave vector component. The donor bound 
wavefunctions are also changed by the magnetic field, but the effect is 
mostly to increase the binding energy. For incident electrons very close to 
threshold, we can make the same argument as above, but because the final 
electron states are one dimensional, the two-electron energy density of states 
will be that of a two-dimensional electron, which is a step-function at zero 
energy. Thus, the onset of impact ionization should be much sharper in 
strong magnetic fields than in zero magnetic field. 
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Appendix 3: Other Work 

Direct Radiative Substrate Heating for Molecular Beam Epitaxy64.  
I have been fortunate to work on an molecular beam epitaxy system 

which was unique in many ways when I began working with it. I was able to 
make a contribution to the characterization of this system, focussing on the 
substrate heating and mounting arrangement. Working with several others, I 
was able to demonstrate the significant advantages of direct radiative heating 
of wire mounted substrates over the older system of soldering wafers with 
indium. Conventional mounting techniques in molecular beam epitaxy using 
indium to solder GaAs substrates to molybdenum blocks result in a rough 
backside which is incompatible with integrated circuit processing. Using the 
radiative heating method, excellent temperature uniformity is achieved over 
a 3” wafer by a molybdenum holder ring design which minimizes contact 
with the substrate and holds the wafer against the back of the ring to 
eliminate shadowing of the substrate from the heater. Temperature 
measurement and control in this heater are done by radiative coupling to a 
shielded thermocouple which sits just behind the GaAs wafer. No coating of 
the wafers is necessary for temperature control. DLTS, photoluminescence, 
and mobility measurements show the clear superiority of GaAs layers grown 
using direct radiative substrate heating compared to conventional indium 
bonding. 

In-situ Transmission Spectroscopy65.  
Again taking advantage of the unique configuration of our MBE 

system, I measured the infra-red light transmission through the GaAs 
substrates during growth. I was able to use this to determine substrate 
temperature and growth rates, solving a significant problem plaguing the 
indium-free holder. 

The substrate temperature can be accurately determined by measuring 
the position of the band-gap absorption edge. The band gap of GaAs shifts 
about 50mV per 100°C in the usual temperature range of MBE growth, and 
has been well characterized previously. The position of the absorption edge 
can be measured to better than 5meV, so a temperature can be determined 
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with an accuracy of better than 10°C. The precision of the measurement is 
±2°C. GaAs substrate temperatures as low as 450°C have been measured, 
and the technique is easily extendable to much lower temperatures. This 
technique was used to calibrate the thermocouple used to control the 
substrate heater during normal MBE growth. 

The growth rates of AlxGa1–xAs and GaAs can be determined by 
measuring the Fabry-Perot interference fringes resulting from thin layers. 
For a single AlxGa1–xAs layer, the amplitude of the fringes observed as a 
function of time is a good measure of the index difference between the layer 
and the substrate. From published data about the GaAs index at high 
temperature, we can get the AlxGa1–xAs index, and thus an estimate of the 
Al mole fraction of the layer. The thickness of the layer can be determined 
by counting the fringes as the layer is grown. For a single layer of 
Al0.3Ga0.7As on GaAs, fringes of magnitude 3.85%±0.62% at 1.468µm are 
observed. The optical thickness can be determined to within ±24nm. For 
multi-layer structures, the variations of the transmittance with wavelength 
become large, so that the optical thickness of both GaAs and AlAs can be 
extracted from a single wavelength scan. An accurate determination of the 
refractive indices of these materials at high temperatures could make this 
technique very important for the reproducible growth of AlxGa1–xAs-GaAs 
heterostructures, because a high precision calibration can be done during 
each growth. 

Polynomial Kinetic Energy Approximations for Indirect Hetero-
structures89.  

Electronic properties of complicated heterostructures incorporating both 
GaAs and AlAs are often impractical to calculate. I have proposed a new 
approximation to incorporate bandstructure into effective mass like 
wavefunctions which may be useful for calculating some of these properties. 

The effective mass approximation, in which the band structure of a 
semiconductor is replaced by a simple parabolic dispersion relation for 
electrons,  works surprisingly well for quantum calculations of electron 
eigenenergies and eigenstates in semiconductor heterostructures. It can be 
extended to systems with spatially varying effective mass by requiring 
wavefunction and particle flux continuity. However, for indirect hetero-
structures which include materials with electron bands of different sym-
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metry, it fails to incorporate enough physics to give correct answers. An 
important example where effective mass calculations are inapplicable is the 
AlAs/GaAs system, in which the conduction band minima occur at the Γ and 
X points, respectively. The mixture of these two types of electrons in 
AlAs/GaAs superlattices has only been calculated using tight-binding or 
pseudopotential methods, which are difficult to apply to a wide range of 
heterostructures. 

I have extended the spirit of effective mass calculations to a method 
applicable to indirect heterostructures. To do this, I write a Schrödinger 
equation in which the Hamiltonian is a nth degree polynomial in the gradient 
operator, �. For any energy, there exist n (complex) plane wave solutions. 
For spatially varying band structures, we can write a probability conserving 
Schrödinger equation which has a flux operator consistent with the usual 
interpretation of plane wave group velocities. The requirements imposed by 
this Schrödinger equation on the wavefunction and its derivatives allow 
matching of the plane wave solutions across heterojunctions. I have applied 
this method to AlAs/GaAs double heterostructures, where  interesting 
resonance and anti-resonance behaviors are seen. The computational speed 
of this method will allow complicated structures, including compositional 
grading and electric fields, to be modeled on microcomputers. 
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